Properties

Label 2-121296-1.1-c1-0-66
Degree $2$
Conductor $121296$
Sign $-1$
Analytic cond. $968.553$
Root an. cond. $31.1215$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s + 13-s − 15-s − 4·17-s + 21-s + 7·23-s − 4·25-s + 27-s − 8·29-s + 10·31-s − 35-s − 8·37-s + 39-s + 6·43-s − 45-s + 8·47-s + 49-s − 4·51-s − 10·53-s + 5·59-s − 7·61-s + 63-s − 65-s − 14·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.277·13-s − 0.258·15-s − 0.970·17-s + 0.218·21-s + 1.45·23-s − 4/5·25-s + 0.192·27-s − 1.48·29-s + 1.79·31-s − 0.169·35-s − 1.31·37-s + 0.160·39-s + 0.914·43-s − 0.149·45-s + 1.16·47-s + 1/7·49-s − 0.560·51-s − 1.37·53-s + 0.650·59-s − 0.896·61-s + 0.125·63-s − 0.124·65-s − 1.71·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121296\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(968.553\)
Root analytic conductor: \(31.1215\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 4 T + p T^{2} \) 1.17.e
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76031533974490, −13.40677196421451, −12.92488540147830, −12.32634261088497, −11.90658014369669, −11.28050595274925, −10.97384855701015, −10.47432970825307, −9.867107019322111, −9.234129986701828, −8.855032129431765, −8.524464601191198, −7.802310220354752, −7.438300731571029, −7.027525975307251, −6.269234340057714, −5.877835876113910, −4.996334664566834, −4.654927945848622, −4.044719401387941, −3.510762860859998, −2.913934578467188, −2.273076799879077, −1.655145188701694, −0.9205699640415479, 0, 0.9205699640415479, 1.655145188701694, 2.273076799879077, 2.913934578467188, 3.510762860859998, 4.044719401387941, 4.654927945848622, 4.996334664566834, 5.877835876113910, 6.269234340057714, 7.027525975307251, 7.438300731571029, 7.802310220354752, 8.524464601191198, 8.855032129431765, 9.234129986701828, 9.867107019322111, 10.47432970825307, 10.97384855701015, 11.28050595274925, 11.90658014369669, 12.32634261088497, 12.92488540147830, 13.40677196421451, 13.76031533974490

Graph of the $Z$-function along the critical line