Properties

Label 2-1210-1.1-c1-0-5
Degree $2$
Conductor $1210$
Sign $1$
Analytic cond. $9.66189$
Root an. cond. $3.10835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s − 2·9-s + 10-s + 12-s − 2·13-s − 14-s − 15-s + 16-s + 3·17-s + 2·18-s + 19-s − 20-s + 21-s + 6·23-s − 24-s + 25-s + 2·26-s − 5·27-s + 28-s + 9·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.316·10-s + 0.288·12-s − 0.554·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.471·18-s + 0.229·19-s − 0.223·20-s + 0.218·21-s + 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.392·26-s − 0.962·27-s + 0.188·28-s + 1.67·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(9.66189\)
Root analytic conductor: \(3.10835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.310852632\)
\(L(\frac12)\) \(\approx\) \(1.310852632\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.651844634834260984432132709240, −8.765998389808211963831363541535, −8.219938500505668411570488798738, −7.54599145387732851661365336346, −6.67937148953544300898990016324, −5.54997230777328407538926369145, −4.55324650873999681187519768266, −3.22052869845115697606926120635, −2.51558198103978347262901162661, −0.940612870362593859078124237356, 0.940612870362593859078124237356, 2.51558198103978347262901162661, 3.22052869845115697606926120635, 4.55324650873999681187519768266, 5.54997230777328407538926369145, 6.67937148953544300898990016324, 7.54599145387732851661365336346, 8.219938500505668411570488798738, 8.765998389808211963831363541535, 9.651844634834260984432132709240

Graph of the $Z$-function along the critical line