Properties

Label 2-120213-1.1-c1-0-2
Degree $2$
Conductor $120213$
Sign $1$
Analytic cond. $959.905$
Root an. cond. $30.9823$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·5-s − 7-s − 3·11-s − 6·13-s + 4·16-s − 2·17-s − 4·20-s − 25-s + 2·28-s + 6·29-s + 4·31-s − 2·35-s + 37-s + 9·41-s + 4·43-s + 6·44-s + 13·47-s − 6·49-s + 12·52-s + 7·53-s − 6·55-s − 6·59-s + 4·61-s − 8·64-s − 12·65-s + 4·67-s + ⋯
L(s)  = 1  − 4-s + 0.894·5-s − 0.377·7-s − 0.904·11-s − 1.66·13-s + 16-s − 0.485·17-s − 0.894·20-s − 1/5·25-s + 0.377·28-s + 1.11·29-s + 0.718·31-s − 0.338·35-s + 0.164·37-s + 1.40·41-s + 0.609·43-s + 0.904·44-s + 1.89·47-s − 6/7·49-s + 1.66·52-s + 0.961·53-s − 0.809·55-s − 0.781·59-s + 0.512·61-s − 64-s − 1.48·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120213 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120213 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120213\)    =    \(3^{2} \cdot 19^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(959.905\)
Root analytic conductor: \(30.9823\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 120213,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.359702753\)
\(L(\frac12)\) \(\approx\) \(1.359702753\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
19 \( 1 \)
37 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53933249505674, −13.11218056173648, −12.74064301409256, −12.17814984402585, −11.90924910181813, −10.94143392152752, −10.43904782565928, −10.11379385666511, −9.652855662815090, −9.255815461018226, −8.830600098545609, −8.113864354619933, −7.665446759109495, −7.220552506515407, −6.429692642202727, −5.982491948743579, −5.396706706627884, −4.975830319235568, −4.474758614810156, −3.963580823159798, −3.040842778148435, −2.498958773160547, −2.186027499432045, −1.042821523973893, −0.4072557251242899, 0.4072557251242899, 1.042821523973893, 2.186027499432045, 2.498958773160547, 3.040842778148435, 3.963580823159798, 4.474758614810156, 4.975830319235568, 5.396706706627884, 5.982491948743579, 6.429692642202727, 7.220552506515407, 7.665446759109495, 8.113864354619933, 8.830600098545609, 9.255815461018226, 9.652855662815090, 10.11379385666511, 10.43904782565928, 10.94143392152752, 11.90924910181813, 12.17814984402585, 12.74064301409256, 13.11218056173648, 13.53933249505674

Graph of the $Z$-function along the critical line