Properties

Label 2-11616-1.1-c1-0-22
Degree $2$
Conductor $11616$
Sign $-1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 4·13-s + 2·17-s − 2·21-s + 2·23-s − 5·25-s + 27-s + 2·29-s + 4·31-s + 6·37-s − 4·39-s + 6·41-s − 12·43-s + 6·47-s − 3·49-s + 2·51-s − 2·63-s − 4·67-s + 2·69-s + 10·71-s − 2·73-s − 5·75-s + 2·79-s + 81-s − 4·83-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 1.10·13-s + 0.485·17-s − 0.436·21-s + 0.417·23-s − 25-s + 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.986·37-s − 0.640·39-s + 0.937·41-s − 1.82·43-s + 0.875·47-s − 3/7·49-s + 0.280·51-s − 0.251·63-s − 0.488·67-s + 0.240·69-s + 1.18·71-s − 0.234·73-s − 0.577·75-s + 0.225·79-s + 1/9·81-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.76756653811750, −16.06518386807363, −15.52470135335677, −15.00879170055742, −14.44415490927525, −13.90110915394402, −13.26380217533552, −12.81282707332928, −12.13755337675725, −11.71418820268166, −10.84839093812922, −10.10734619783385, −9.674733692041705, −9.316320273905396, −8.383826010626848, −7.895074844449061, −7.230372879276636, −6.628424951012084, −5.925729276770750, −5.127149145927394, −4.401345279523217, −3.649716824705062, −2.875081145919316, −2.350445895858594, −1.218941462429640, 0, 1.218941462429640, 2.350445895858594, 2.875081145919316, 3.649716824705062, 4.401345279523217, 5.127149145927394, 5.925729276770750, 6.628424951012084, 7.230372879276636, 7.895074844449061, 8.383826010626848, 9.316320273905396, 9.674733692041705, 10.10734619783385, 10.84839093812922, 11.71418820268166, 12.13755337675725, 12.81282707332928, 13.26380217533552, 13.90110915394402, 14.44415490927525, 15.00879170055742, 15.52470135335677, 16.06518386807363, 16.76756653811750

Graph of the $Z$-function along the critical line