Properties

Label 2-116032-1.1-c1-0-22
Degree $2$
Conductor $116032$
Sign $-1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·5-s + 9-s + 11-s − 3·13-s + 6·15-s + 2·17-s − 4·19-s + 2·23-s + 4·25-s + 4·27-s − 2·29-s − 31-s − 2·33-s − 37-s + 6·39-s + 6·41-s + 2·43-s − 3·45-s + 12·47-s − 4·51-s − 9·53-s − 3·55-s + 8·57-s − 59-s + 2·61-s + 9·65-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.34·5-s + 1/3·9-s + 0.301·11-s − 0.832·13-s + 1.54·15-s + 0.485·17-s − 0.917·19-s + 0.417·23-s + 4/5·25-s + 0.769·27-s − 0.371·29-s − 0.179·31-s − 0.348·33-s − 0.164·37-s + 0.960·39-s + 0.937·41-s + 0.304·43-s − 0.447·45-s + 1.75·47-s − 0.560·51-s − 1.23·53-s − 0.404·55-s + 1.05·57-s − 0.130·59-s + 0.256·61-s + 1.11·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + T + p T^{2} \) 1.31.b
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99752280760240, −13.07454664581951, −12.63102390008320, −12.33353244074858, −11.87234254277386, −11.42261429959685, −11.11609275010951, −10.51978860915812, −10.22369770828024, −9.376007321763859, −8.950365532522561, −8.374641067214971, −7.735079007915002, −7.390319146651473, −6.903875709856387, −6.285649308524610, −5.764277600238815, −5.274595374312387, −4.531845616412169, −4.333588197171213, −3.640659870600191, −2.975167647962240, −2.314250583920006, −1.335830264058810, −0.5845062422642451, 0, 0.5845062422642451, 1.335830264058810, 2.314250583920006, 2.975167647962240, 3.640659870600191, 4.333588197171213, 4.531845616412169, 5.274595374312387, 5.764277600238815, 6.285649308524610, 6.903875709856387, 7.390319146651473, 7.735079007915002, 8.374641067214971, 8.950365532522561, 9.376007321763859, 10.22369770828024, 10.51978860915812, 11.11609275010951, 11.42261429959685, 11.87234254277386, 12.33353244074858, 12.63102390008320, 13.07454664581951, 13.99752280760240

Graph of the $Z$-function along the critical line