Properties

Label 2-11154-1.1-c1-0-23
Degree $2$
Conductor $11154$
Sign $-1$
Analytic cond. $89.0651$
Root an. cond. $9.43743$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 3·7-s − 8-s + 9-s − 10-s − 11-s − 12-s − 3·14-s − 15-s + 16-s − 4·17-s − 18-s + 2·19-s + 20-s − 3·21-s + 22-s − 23-s + 24-s − 4·25-s − 27-s + 3·28-s − 9·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.288·12-s − 0.801·14-s − 0.258·15-s + 1/4·16-s − 0.970·17-s − 0.235·18-s + 0.458·19-s + 0.223·20-s − 0.654·21-s + 0.213·22-s − 0.208·23-s + 0.204·24-s − 4/5·25-s − 0.192·27-s + 0.566·28-s − 1.67·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11154 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11154 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11154\)    =    \(2 \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(89.0651\)
Root analytic conductor: \(9.43743\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11154,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.00271940762731, −16.09923709870537, −15.94644033960058, −14.99878492803243, −14.74128652438317, −13.84689394151190, −13.36530711948752, −12.70016693988934, −11.93319144570564, −11.38527189657613, −11.02536684592367, −10.47014118282388, −9.675623413102995, −9.276558315199704, −8.517765796631997, −7.718742275633715, −7.521347737301756, −6.524456536656092, −5.933276700002546, −5.330711032893972, −4.593165398905653, −3.873713980018231, −2.617920377385405, −1.941196199740374, −1.191647055698837, 0, 1.191647055698837, 1.941196199740374, 2.617920377385405, 3.873713980018231, 4.593165398905653, 5.330711032893972, 5.933276700002546, 6.524456536656092, 7.521347737301756, 7.718742275633715, 8.517765796631997, 9.276558315199704, 9.675623413102995, 10.47014118282388, 11.02536684592367, 11.38527189657613, 11.93319144570564, 12.70016693988934, 13.36530711948752, 13.84689394151190, 14.74128652438317, 14.99878492803243, 15.94644033960058, 16.09923709870537, 17.00271940762731

Graph of the $Z$-function along the critical line