Properties

Label 2-103488-1.1-c1-0-123
Degree $2$
Conductor $103488$
Sign $1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 9-s − 11-s + 6·13-s − 4·15-s − 2·19-s + 4·23-s + 11·25-s − 27-s + 2·29-s + 2·31-s + 33-s − 2·37-s − 6·39-s + 4·43-s + 4·45-s − 6·47-s − 2·53-s − 4·55-s + 2·57-s + 14·61-s + 24·65-s + 12·67-s − 4·69-s + 8·71-s + 4·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.301·11-s + 1.66·13-s − 1.03·15-s − 0.458·19-s + 0.834·23-s + 11/5·25-s − 0.192·27-s + 0.371·29-s + 0.359·31-s + 0.174·33-s − 0.328·37-s − 0.960·39-s + 0.609·43-s + 0.596·45-s − 0.875·47-s − 0.274·53-s − 0.539·55-s + 0.264·57-s + 1.79·61-s + 2.97·65-s + 1.46·67-s − 0.481·69-s + 0.949·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.318505267\)
\(L(\frac12)\) \(\approx\) \(4.318505267\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80623655393184, −13.15428111522453, −12.79267689411532, −12.58390804289591, −11.52214155250464, −11.27587908966998, −10.70592761279774, −10.29403127617208, −9.919215336350270, −9.278152371830107, −8.858598204740116, −8.391049999347397, −7.750603846972913, −6.852995426597072, −6.501780396265665, −6.178158346733563, −5.609211970634460, −5.118458991522812, −4.710465357437873, −3.771307376654926, −3.282031907145412, −2.375943272994839, −1.999196933693110, −1.167347367704277, −0.7604005431409726, 0.7604005431409726, 1.167347367704277, 1.999196933693110, 2.375943272994839, 3.282031907145412, 3.771307376654926, 4.710465357437873, 5.118458991522812, 5.609211970634460, 6.178158346733563, 6.501780396265665, 6.852995426597072, 7.750603846972913, 8.391049999347397, 8.858598204740116, 9.278152371830107, 9.919215336350270, 10.29403127617208, 10.70592761279774, 11.27587908966998, 11.52214155250464, 12.58390804289591, 12.79267689411532, 13.15428111522453, 13.80623655393184

Graph of the $Z$-function along the critical line