Properties

Label 2-10192-1.1-c1-0-15
Degree $2$
Conductor $10192$
Sign $1$
Analytic cond. $81.3835$
Root an. cond. $9.02128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 2·9-s + 5·11-s + 13-s + 2·15-s + 8·17-s − 8·19-s − 7·23-s − 25-s − 5·27-s + 6·29-s + 5·31-s + 5·33-s + 37-s + 39-s − 9·41-s − 2·43-s − 4·45-s − 3·47-s + 8·51-s + 10·53-s + 10·55-s − 8·57-s + 4·59-s + 7·61-s + 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 2/3·9-s + 1.50·11-s + 0.277·13-s + 0.516·15-s + 1.94·17-s − 1.83·19-s − 1.45·23-s − 1/5·25-s − 0.962·27-s + 1.11·29-s + 0.898·31-s + 0.870·33-s + 0.164·37-s + 0.160·39-s − 1.40·41-s − 0.304·43-s − 0.596·45-s − 0.437·47-s + 1.12·51-s + 1.37·53-s + 1.34·55-s − 1.05·57-s + 0.520·59-s + 0.896·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10192\)    =    \(2^{4} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(81.3835\)
Root analytic conductor: \(9.02128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10192,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.393016517\)
\(L(\frac12)\) \(\approx\) \(3.393016517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.73051103847570, −16.21844120937837, −15.19863461727388, −14.78504939643324, −14.23697225956256, −13.87672289838109, −13.43875862364278, −12.46480623590752, −12.00224871145127, −11.56606639734229, −10.57144387246484, −10.00425930212966, −9.629215115879555, −8.864293280632701, −8.243315319330288, −7.983862338465249, −6.632903372739053, −6.398102412620506, −5.735603895507623, −4.974707853570865, −3.833234992598847, −3.591111696879199, −2.413452318423422, −1.887776584923641, −0.8598748104182698, 0.8598748104182698, 1.887776584923641, 2.413452318423422, 3.591111696879199, 3.833234992598847, 4.974707853570865, 5.735603895507623, 6.398102412620506, 6.632903372739053, 7.983862338465249, 8.243315319330288, 8.864293280632701, 9.629215115879555, 10.00425930212966, 10.57144387246484, 11.56606639734229, 12.00224871145127, 12.46480623590752, 13.43875862364278, 13.87672289838109, 14.23697225956256, 14.78504939643324, 15.19863461727388, 16.21844120937837, 16.73051103847570

Graph of the $Z$-function along the critical line