| L(s) = 1 | − 2·2-s + 2·4-s + 7-s − 2·14-s − 4·16-s + 6·17-s + 3·23-s + 25-s + 2·28-s − 6·31-s + 8·32-s − 12·34-s + 9·41-s − 6·46-s + 47-s − 7·49-s − 2·50-s + 12·62-s − 8·64-s + 12·68-s − 21·71-s − 2·73-s − 10·79-s − 9·81-s − 18·82-s + 14·89-s + 6·92-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 4-s + 0.377·7-s − 0.534·14-s − 16-s + 1.45·17-s + 0.625·23-s + 1/5·25-s + 0.377·28-s − 1.07·31-s + 1.41·32-s − 2.05·34-s + 1.40·41-s − 0.884·46-s + 0.145·47-s − 49-s − 0.282·50-s + 1.52·62-s − 64-s + 1.45·68-s − 2.49·71-s − 0.234·73-s − 1.12·79-s − 81-s − 1.98·82-s + 1.48·89-s + 0.625·92-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.4747036082\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4747036082\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82992595425393635703302792539, −11.39414924390388464099397038373, −10.77386017949551753345392494641, −10.29332657799234023607454467844, −9.738151895439556723551023257693, −9.097477028253520902546750607443, −8.702076416325054910476466713927, −7.81137035023651695124647336226, −7.59497928114696076685243757952, −6.85758523931776310993182430947, −5.90830598878498044032218021491, −5.13191493880804532693148933802, −4.15389212716158206258524853882, −2.90599355202376937278882597636, −1.44514919932543842686575227267,
1.44514919932543842686575227267, 2.90599355202376937278882597636, 4.15389212716158206258524853882, 5.13191493880804532693148933802, 5.90830598878498044032218021491, 6.85758523931776310993182430947, 7.59497928114696076685243757952, 7.81137035023651695124647336226, 8.702076416325054910476466713927, 9.097477028253520902546750607443, 9.738151895439556723551023257693, 10.29332657799234023607454467844, 10.77386017949551753345392494641, 11.39414924390388464099397038373, 11.82992595425393635703302792539