| L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 15-s + 16-s − 18-s − 3·19-s + 20-s − 3·23-s + 24-s − 4·25-s − 27-s − 13·29-s + 30-s − 32-s + 36-s + 3·38-s − 40-s + 3·43-s + 45-s + 3·46-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.688·19-s + 0.223·20-s − 0.625·23-s + 0.204·24-s − 4/5·25-s − 0.192·27-s − 2.41·29-s + 0.182·30-s − 0.176·32-s + 1/6·36-s + 0.486·38-s − 0.158·40-s + 0.457·43-s + 0.149·45-s + 0.442·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.488508116022142522567121758527, −9.098504889599531682651349493401, −8.464207958085013711200527099444, −7.78793159490815791311120559755, −7.62405464012774177932176374876, −6.84883701755976447671101395475, −6.33771744127223914035700129551, −5.90213423364627850092735120642, −5.41621509922772428968222016010, −4.68967570047508704700511786422, −3.94759954382028462167055040267, −3.28473480709116034007044494996, −2.15723637421008685020540702177, −1.63963618836585869125685918219, 0,
1.63963618836585869125685918219, 2.15723637421008685020540702177, 3.28473480709116034007044494996, 3.94759954382028462167055040267, 4.68967570047508704700511786422, 5.41621509922772428968222016010, 5.90213423364627850092735120642, 6.33771744127223914035700129551, 6.84883701755976447671101395475, 7.62405464012774177932176374876, 7.78793159490815791311120559755, 8.464207958085013711200527099444, 9.098504889599531682651349493401, 9.488508116022142522567121758527