Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 49 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.181846311015$, $\pm0.818153688985$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-69}, \sqrt{167})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $56$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3433$ | $11785489$ | $42180927700$ | $146941017217929$ | $511116752097093553$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3384$ | $205380$ | $12126484$ | $714924300$ | $42181321758$ | $2488651484820$ | $146830444468324$ | $8662995818654940$ | $511116750893545704$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=55 x^6+38 x^5+44 x^4+55 x^3+58 x^2+28 x+14$
- $y^2=51 x^6+17 x^5+29 x^4+51 x^3+57 x^2+56 x+28$
- $y^2=58 x^6+40 x^5+4 x^4+52 x^3+41 x^2+13 x+11$
- $y^2=57 x^6+21 x^5+8 x^4+45 x^3+23 x^2+26 x+22$
- $y^2=46 x^6+49 x^5+17 x^4+38 x^3+24 x^2+53 x+22$
- $y^2=33 x^6+39 x^5+34 x^4+17 x^3+48 x^2+47 x+44$
- $y^2=55 x^6+4 x^5+21 x^4+33 x^3+9 x^2+33 x+2$
- $y^2=51 x^6+8 x^5+42 x^4+7 x^3+18 x^2+7 x+4$
- $y^2=57 x^6+32 x^5+57 x^4+44 x^3+44 x+13$
- $y^2=55 x^6+5 x^5+55 x^4+29 x^3+29 x+26$
- $y^2=4 x^6+36 x^5+8 x^4+30 x^3+52 x^2+42 x+57$
- $y^2=8 x^6+13 x^5+16 x^4+x^3+45 x^2+25 x+55$
- $y^2=38 x^6+15 x^5+23 x^4+12 x^3+31 x^2+25 x+21$
- $y^2=17 x^6+30 x^5+46 x^4+24 x^3+3 x^2+50 x+42$
- $y^2=5 x^6+17 x^5+25 x^4+35 x^3+2 x^2+17 x+30$
- $y^2=10 x^6+34 x^5+50 x^4+11 x^3+4 x^2+34 x+1$
- $y^2=10 x^6+14 x^5+10 x^4+33 x^3+35 x+32$
- $y^2=20 x^6+28 x^5+20 x^4+7 x^3+11 x+5$
- $y^2=27 x^6+13 x^5+47 x^4+6 x^3+27 x^2+41 x+35$
- $y^2=54 x^6+26 x^5+35 x^4+12 x^3+54 x^2+23 x+11$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-69}, \sqrt{167})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.abx 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11523}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.a_bx | $4$ | (not in LMFDB) |