Properties

Label 2.59.a_abx
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 49 x^{2} + 3481 x^{4}$
Frobenius angles:  $\pm0.181846311015$, $\pm0.818153688985$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-69}, \sqrt{167})\)
Galois group:  $C_2^2$
Jacobians:  $56$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3433$ $11785489$ $42180927700$ $146941017217929$ $511116752097093553$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $3384$ $205380$ $12126484$ $714924300$ $42181321758$ $2488651484820$ $146830444468324$ $8662995818654940$ $511116750893545704$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{2}}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-69}, \sqrt{167})\).
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.abx 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11523}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_bx$4$(not in LMFDB)