L(s) = 1 | + 2·2-s + 3·4-s + 3·7-s + 4·8-s − 5·9-s + 2·11-s + 6·14-s + 5·16-s − 10·18-s + 4·22-s − 12·23-s + 25-s + 9·28-s + 10·29-s + 6·32-s − 15·36-s + 6·37-s + 8·43-s + 6·44-s − 24·46-s + 2·49-s + 2·50-s − 2·53-s + 12·56-s + 20·58-s − 15·63-s + 7·64-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.13·7-s + 1.41·8-s − 5/3·9-s + 0.603·11-s + 1.60·14-s + 5/4·16-s − 2.35·18-s + 0.852·22-s − 2.50·23-s + 1/5·25-s + 1.70·28-s + 1.85·29-s + 1.06·32-s − 5/2·36-s + 0.986·37-s + 1.21·43-s + 0.904·44-s − 3.53·46-s + 2/7·49-s + 0.282·50-s − 0.274·53-s + 1.60·56-s + 2.62·58-s − 1.88·63-s + 7/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 592900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.201342520\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.201342520\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.179100717490198570895041997468, −8.040279775818558509679448913672, −7.64414702723538290730003684901, −6.71133528252224918895941305968, −6.45727768735845281382720038316, −6.09792541147733225681149376805, −5.43280032020194587138281999658, −5.32819444768541291953052917923, −4.57429547993073909832853594043, −4.22394490747904301331264691816, −3.70218143630793948520871859223, −3.07617612477761288858296720437, −2.34744313488402780667751356221, −2.10347249498215262240223155354, −0.948761287194466744858706658557,
0.948761287194466744858706658557, 2.10347249498215262240223155354, 2.34744313488402780667751356221, 3.07617612477761288858296720437, 3.70218143630793948520871859223, 4.22394490747904301331264691816, 4.57429547993073909832853594043, 5.32819444768541291953052917923, 5.43280032020194587138281999658, 6.09792541147733225681149376805, 6.45727768735845281382720038316, 6.71133528252224918895941305968, 7.64414702723538290730003684901, 8.040279775818558509679448913672, 8.179100717490198570895041997468