| L(s) = 1 | + 2·2-s + 2·4-s + 4·5-s + 8·10-s + 2·13-s − 4·16-s + 8·17-s + 8·20-s + 11·25-s + 4·26-s − 20·29-s − 8·32-s + 16·34-s − 10·37-s + 22·50-s + 4·52-s + 18·53-s − 40·58-s − 8·64-s + 8·65-s + 16·68-s + 10·73-s − 20·74-s − 16·80-s − 9·81-s + 32·85-s − 10·97-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s + 1.78·5-s + 2.52·10-s + 0.554·13-s − 16-s + 1.94·17-s + 1.78·20-s + 11/5·25-s + 0.784·26-s − 3.71·29-s − 1.41·32-s + 2.74·34-s − 1.64·37-s + 3.11·50-s + 0.554·52-s + 2.47·53-s − 5.25·58-s − 64-s + 0.992·65-s + 1.94·68-s + 1.17·73-s − 2.32·74-s − 1.78·80-s − 81-s + 3.47·85-s − 1.01·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.460437619\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.460437619\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98002012353268937319550724097, −11.38961192761939788018784619860, −10.85443755500901586199281316203, −10.51966915853878124657601935344, −9.794057888582112997668458879022, −9.656841411070446704639756335200, −9.014510985185415028167487529491, −8.709251911422961734965856425360, −7.85162343241887698740491356459, −7.23475224260280698281711463759, −6.82549173827902152596767672483, −6.15080366012953773311030885016, −5.52798194217275465272735371821, −5.52770991282800101759056804829, −5.18416447527091488508098656587, −3.99946772094043422010094958752, −3.67376613256604571084800990535, −2.97182785072440518286992929891, −2.14612365211137396266405409380, −1.50483302313949655495933201708,
1.50483302313949655495933201708, 2.14612365211137396266405409380, 2.97182785072440518286992929891, 3.67376613256604571084800990535, 3.99946772094043422010094958752, 5.18416447527091488508098656587, 5.52770991282800101759056804829, 5.52798194217275465272735371821, 6.15080366012953773311030885016, 6.82549173827902152596767672483, 7.23475224260280698281711463759, 7.85162343241887698740491356459, 8.709251911422961734965856425360, 9.014510985185415028167487529491, 9.656841411070446704639756335200, 9.794057888582112997668458879022, 10.51966915853878124657601935344, 10.85443755500901586199281316203, 11.38961192761939788018784619860, 11.98002012353268937319550724097