L(s) = 1 | − 3·5-s − 9-s − 5·13-s + 10·17-s + 4·25-s − 13·29-s − 5·37-s + 2·41-s + 3·45-s − 11·49-s − 10·53-s − 61-s + 15·65-s − 20·73-s + 81-s − 30·85-s + 3·89-s − 20·97-s − 101-s − 16·109-s + 10·113-s + 5·117-s + 4·121-s + 3·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.34·5-s − 1/3·9-s − 1.38·13-s + 2.42·17-s + 4/5·25-s − 2.41·29-s − 0.821·37-s + 0.312·41-s + 0.447·45-s − 1.57·49-s − 1.37·53-s − 0.128·61-s + 1.86·65-s − 2.34·73-s + 1/9·81-s − 3.25·85-s + 0.317·89-s − 2.03·97-s − 0.0995·101-s − 1.53·109-s + 0.940·113-s + 0.462·117-s + 4/11·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.633856258612352948799981920451, −9.413950095898854559625719759590, −8.616055116496221828080002977134, −7.955698828669111876069728402253, −7.72295349118974320635435756172, −7.36461979270040181614265986009, −6.79018737764365042759819087546, −5.80251884957167446450534139804, −5.45195519943668363961343711838, −4.80485489526250567688885927655, −4.07550605155476125475085699965, −3.38792423368953983467273395287, −2.97484260424592753553088949917, −1.65794635139681958335660676269, 0,
1.65794635139681958335660676269, 2.97484260424592753553088949917, 3.38792423368953983467273395287, 4.07550605155476125475085699965, 4.80485489526250567688885927655, 5.45195519943668363961343711838, 5.80251884957167446450534139804, 6.79018737764365042759819087546, 7.36461979270040181614265986009, 7.72295349118974320635435756172, 7.955698828669111876069728402253, 8.616055116496221828080002977134, 9.413950095898854559625719759590, 9.633856258612352948799981920451