Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 53 x^{2} )( 1 + 8 x + 53 x^{2} )$ |
$1 + 10 x + 122 x^{2} + 530 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.543861900584$, $\pm0.685159765542$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $72$ |
Isomorphism classes: | 240 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3472$ | $8305024$ | $22005595024$ | $62252333817856$ | $174902296477833232$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $2954$ | $147808$ | $7889550$ | $418230944$ | $22164282938$ | $1174711096448$ | $62259684214174$ | $3299763600930304$ | $174887471272926314$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=40 x^6+19 x^5+44 x^4+31 x^3+15 x^2+41 x+17$
- $y^2=28 x^6+30 x^5+37 x^4+33 x^3+52 x^2+11 x+10$
- $y^2=26 x^6+27 x^5+43 x^4+16 x^3+38 x^2+4 x+47$
- $y^2=15 x^6+25 x^5+24 x^4+37 x^2+x+10$
- $y^2=34 x^6+51 x^5+6 x^4+30 x^3+11 x^2+8 x+51$
- $y^2=14 x^6+22 x^5+20 x^4+48 x^3+21 x+19$
- $y^2=x^6+49 x^5+11 x^4+5 x^3+45 x^2+11 x+8$
- $y^2=22 x^6+20 x^5+48 x^4+7 x^3+39 x^2+51 x+40$
- $y^2=14 x^6+5 x^5+45 x^4+38 x^3+6 x^2+25 x+12$
- $y^2=21 x^6+x^5+43 x^4+19 x^3+9 x^2+15 x+7$
- $y^2=16 x^6+3 x^5+50 x^4+9 x^3+48 x^2+22 x+35$
- $y^2=29 x^6+3 x^5+18 x^4+41 x^3+42 x^2+15 x+51$
- $y^2=43 x^6+17 x^5+31 x^4+16 x^3+20 x^2+25 x+6$
- $y^2=10 x^6+9 x^5+51 x^4+31 x^3+18 x^2+40 x+24$
- $y^2=51 x^6+35 x^5+5 x^4+20 x^3+30 x^2+45 x+36$
- $y^2=49 x^6+41 x^5+34 x^4+31 x^3+25 x^2+27 x+15$
- $y^2=10 x^6+15 x^5+16 x^4+18 x^3+37 x^2+32 x+24$
- $y^2=47 x^6+12 x^5+24 x^4+47 x^3+24 x^2+12 x+47$
- $y^2=47 x^6+35 x^5+14 x^4+24 x^3+16 x+17$
- $y^2=50 x^6+13 x^5+25 x^4+51 x^3+52 x^2+10 x+5$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.c $\times$ 1.53.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ak_es | $2$ | (not in LMFDB) |
2.53.ag_dm | $2$ | (not in LMFDB) |
2.53.g_dm | $2$ | (not in LMFDB) |