Properties

Label 2.53.k_es
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 + 2 x + 53 x^{2} )( 1 + 8 x + 53 x^{2} )$
  $1 + 10 x + 122 x^{2} + 530 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.543861900584$, $\pm0.685159765542$
Angle rank:  $2$ (numerical)
Jacobians:  $72$
Isomorphism classes:  240

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3472$ $8305024$ $22005595024$ $62252333817856$ $174902296477833232$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $64$ $2954$ $147808$ $7889550$ $418230944$ $22164282938$ $1174711096448$ $62259684214174$ $3299763600930304$ $174887471272926314$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.c $\times$ 1.53.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ak_es$2$(not in LMFDB)
2.53.ag_dm$2$(not in LMFDB)
2.53.g_dm$2$(not in LMFDB)