Properties

Label 2.37.f_bm
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 37 x^{2} )( 1 + 9 x + 37 x^{2} )$
  $1 + 5 x + 38 x^{2} + 185 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.393356479550$, $\pm0.765077740875$
Angle rank:  $2$ (numerical)
Jacobians:  $28$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1598$ $1946364$ $2571297056$ $3516347915136$ $4806450686189318$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $43$ $1421$ $50764$ $1876225$ $69313183$ $2565711722$ $94932587779$ $3512479327969$ $129961758268588$ $4808584173475061$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The isogeny class factors as 1.37.ae $\times$ 1.37.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.an_eg$2$(not in LMFDB)
2.37.af_bm$2$(not in LMFDB)
2.37.n_eg$2$(not in LMFDB)