Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 37 x^{2} )( 1 + 9 x + 37 x^{2} )$ |
$1 + 5 x + 38 x^{2} + 185 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.393356479550$, $\pm0.765077740875$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $28$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1598$ | $1946364$ | $2571297056$ | $3516347915136$ | $4806450686189318$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $43$ | $1421$ | $50764$ | $1876225$ | $69313183$ | $2565711722$ | $94932587779$ | $3512479327969$ | $129961758268588$ | $4808584173475061$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=2 x^6+11 x^5+11 x^4+22 x^3+4 x^2+15 x+2$
- $y^2=18 x^6+16 x^5+33 x^4+6 x^3+7 x+24$
- $y^2=10 x^6+34 x^5+21 x^3+35 x^2+32 x+8$
- $y^2=4 x^6+36 x^5+15 x^4+29 x^3+15 x^2+34 x+14$
- $y^2=18 x^6+13 x^5+7 x^4+35 x^3+33 x^2+24 x+36$
- $y^2=31 x^6+25 x^5+9 x^4+35 x^3+20 x^2+12 x+13$
- $y^2=20 x^6+3 x^5+x^4+17 x^3+27 x^2+9 x$
- $y^2=4 x^6+13 x^5+16 x^4+27 x^3+22 x^2+30 x+24$
- $y^2=25 x^6+7 x^5+28 x^4+21 x^3+26 x^2+35 x+4$
- $y^2=9 x^6+16 x^5+7 x^4+5 x^3+9 x^2+12$
- $y^2=9 x^6+16 x^5+5 x^4+25 x^3+3 x^2+16 x+12$
- $y^2=19 x^6+3 x^5+7 x^4+18 x^3+5 x^2+11 x+31$
- $y^2=14 x^6+23 x^5+5 x^4+32 x^3+10 x^2+22 x+26$
- $y^2=15 x^6+11 x^5+24 x^4+22 x^3+15 x^2+32 x+16$
- $y^2=20 x^5+20 x^4+8 x^3+18 x^2+34$
- $y^2=4 x^6+8 x^4+10 x^3+13 x^2+11$
- $y^2=19 x^6+5 x^5+25 x^4+32 x^3+12 x^2+12 x+26$
- $y^2=28 x^6+24 x^5+35 x^4+28 x^3+21 x^2+25 x+23$
- $y^2=16 x^6+15 x^5+12 x^4+5 x^3+32 x^2+13 x+15$
- $y^2=22 x^6+6 x^5+4 x^4+19 x^3+14 x^2+29 x+18$
- $y^2=10 x^6+23 x^5+9 x^4+31 x^3+8 x^2+17 x+36$
- $y^2=5 x^6+21 x^5+14 x^4+30 x^3+16 x^2+26$
- $y^2=26 x^6+x^5+4 x^4+25 x^3+5 x^2+12 x$
- $y^2=12 x^6+25 x^5+27 x^4+19 x^3+34 x^2+26 x+10$
- $y^2=8 x^6+4 x^5+5 x^4+18 x^3+29 x^2+12 x+3$
- $y^2=32 x^6+25 x^5+11 x^4+34 x^3+15 x^2+21 x+33$
- $y^2=3 x^6+13 x^5+29 x^4+11 x^3+28 x^2+5 x+12$
- $y^2=10 x^6+33 x^5+9 x^4+13 x^3+27 x^2+8 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.ae $\times$ 1.37.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.an_eg | $2$ | (not in LMFDB) |
2.37.af_bm | $2$ | (not in LMFDB) |
2.37.n_eg | $2$ | (not in LMFDB) |