Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 89 x^{2} )( 1 + 11 x + 89 x^{2} )$ |
$1 - 3 x + 24 x^{2} - 267 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.233878122877$, $\pm0.698120790322$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $180$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7676$ | $63066016$ | $496549662896$ | $3938352873769600$ | $31182463721668939196$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $7961$ | $704358$ | $62770353$ | $5584192647$ | $496980543566$ | $44231341809903$ | $3936588657279073$ | $350356401841663062$ | $31181719935697130681$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=41 x^6+3 x^5+27 x^4+88 x^3+27 x^2+17 x+7$
- $y^2=53 x^6+38 x^5+50 x^4+44 x^3+79 x^2+22 x+11$
- $y^2=63 x^6+x^5+42 x^4+82 x^3+19 x^2+16 x+27$
- $y^2=28 x^6+10 x^5+12 x^4+64 x^3+21 x^2+71 x+47$
- $y^2=68 x^6+54 x^5+17 x^4+38 x^3+21 x^2+15 x+84$
- $y^2=5 x^6+66 x^5+39 x^4+78 x^3+85 x^2+50 x$
- $y^2=10 x^6+23 x^5+76 x^4+25 x^3+80 x^2+34 x+43$
- $y^2=39 x^6+38 x^5+48 x^4+74 x^3+15 x^2+52 x+46$
- $y^2=33 x^6+23 x^5+58 x^4+79 x^3+32 x^2+26 x+10$
- $y^2=7 x^6+3 x^5+13 x^4+13 x^3+50 x^2+69 x+16$
- $y^2=37 x^6+28 x^5+53 x^4+36 x^3+11 x^2+31 x+8$
- $y^2=42 x^6+17 x^5+16 x^4+17 x^2+66 x+42$
- $y^2=3 x^6+4 x^5+5 x^4+64 x^3+46 x^2+40 x+65$
- $y^2=66 x^6+53 x^5+63 x^4+19 x^3+50 x^2+37 x+86$
- $y^2=43 x^6+30 x^5+50 x^4+85 x^3+71 x^2+74 x+87$
- $y^2=30 x^6+27 x^5+8 x^4+x^3+73 x^2+86 x+18$
- $y^2=65 x^6+56 x^5+40 x^4+45 x^3+40 x^2+11 x+25$
- $y^2=7 x^6+57 x^5+73 x^4+82 x^3+11 x^2+85 x+73$
- $y^2=64 x^5+78 x^4+10 x^3+32 x^2+13 x+80$
- $y^2=10 x^6+5 x^5+30 x^4+8 x^3+74 x^2+31 x+65$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.ao $\times$ 1.89.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.az_mu | $2$ | (not in LMFDB) |
2.89.d_y | $2$ | (not in LMFDB) |
2.89.z_mu | $2$ | (not in LMFDB) |