| L(s) = 1 | − 4-s + 13-s − 3·16-s − 7·19-s + 4·25-s + 5·31-s − 4·37-s − 3·43-s − 7·49-s − 52-s + 4·61-s + 7·64-s + 5·67-s + 23·73-s + 7·76-s + 3·79-s + 12·97-s − 4·100-s − 5·103-s − 9·109-s − 121-s − 5·124-s + 127-s + 131-s + 137-s + 139-s + 4·148-s + ⋯ |
| L(s) = 1 | − 1/2·4-s + 0.277·13-s − 3/4·16-s − 1.60·19-s + 4/5·25-s + 0.898·31-s − 0.657·37-s − 0.457·43-s − 49-s − 0.138·52-s + 0.512·61-s + 7/8·64-s + 0.610·67-s + 2.69·73-s + 0.802·76-s + 0.337·79-s + 1.21·97-s − 2/5·100-s − 0.492·103-s − 0.862·109-s − 0.0909·121-s − 0.449·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.328·148-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.384949703856756874942379834376, −8.037829615881562767659111341635, −7.41589294498630329879953960107, −6.78795216655047013063833103140, −6.46474749746792263003418565534, −6.21832963282134520906170794995, −5.34477991983511437267937915109, −4.88046846902455276202328240149, −4.63501604263519821658798531085, −3.81862908254803253399694091305, −3.59788033285030893128170448014, −2.57988176607845137820285931875, −2.18859021475581575920629672924, −1.17420759746258049161059586082, 0,
1.17420759746258049161059586082, 2.18859021475581575920629672924, 2.57988176607845137820285931875, 3.59788033285030893128170448014, 3.81862908254803253399694091305, 4.63501604263519821658798531085, 4.88046846902455276202328240149, 5.34477991983511437267937915109, 6.21832963282134520906170794995, 6.46474749746792263003418565534, 6.78795216655047013063833103140, 7.41589294498630329879953960107, 8.037829615881562767659111341635, 8.384949703856756874942379834376