Properties

Label 2.73.ax_km
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 - 14 x + 73 x^{2} )( 1 - 9 x + 73 x^{2} )$
  $1 - 23 x + 272 x^{2} - 1679 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.194368965322$, $\pm0.323434683416$
Angle rank:  $2$ (numerical)
Jacobians:  $36$
Isomorphism classes:  234
Cyclic group of points:    no
Non-cyclic primes:   $2, 5$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3900$ $28485600$ $151943828400$ $806874559920000$ $4297745938426297500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $51$ $5345$ $390582$ $28412833$ $2073129531$ $151334136110$ $11047396849827$ $806460097550593$ $58871586832250886$ $4297625828694458225$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.ao $\times$ 1.73.aj and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.af_u$2$(not in LMFDB)
2.73.f_u$2$(not in LMFDB)
2.73.x_km$2$(not in LMFDB)