Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 73 x^{2} )( 1 - 9 x + 73 x^{2} )$ |
| $1 - 23 x + 272 x^{2} - 1679 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.194368965322$, $\pm0.323434683416$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $36$ |
| Isomorphism classes: | 234 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3900$ | $28485600$ | $151943828400$ | $806874559920000$ | $4297745938426297500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $51$ | $5345$ | $390582$ | $28412833$ | $2073129531$ | $151334136110$ | $11047396849827$ | $806460097550593$ | $58871586832250886$ | $4297625828694458225$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=40 x^6+61 x^5+68 x^4+46 x^3+12 x^2+18 x+26$
- $y^2=11 x^6+25 x^5+33 x^4+39 x^3+41 x^2+55 x+20$
- $y^2=18 x^6+47 x^5+56 x^4+51 x^3+24 x^2+7 x+46$
- $y^2=19 x^6+58 x^5+25 x^4+16 x^3+64 x^2+7 x+33$
- $y^2=22 x^6+36 x^5+25 x^4+20 x^3+56 x^2+9 x+65$
- $y^2=31 x^6+57 x^5+37 x^4+61 x^3+71 x^2+69 x+61$
- $y^2=15 x^6+47 x^4+12 x^3+15 x^2+6 x+60$
- $y^2=15 x^6+27 x^5+51 x^4+38 x^3+37 x^2+72 x+50$
- $y^2=30 x^6+36 x^5+18 x^4+17 x^3+9 x^2+29 x+50$
- $y^2=19 x^6+27 x^5+47 x^4+37 x^3+42 x^2+4 x+43$
- $y^2=28 x^6+71 x^5+8 x^4+59 x^3+17 x^2+69 x+20$
- $y^2=13 x^6+23 x^5+44 x^4+31 x^3+44 x^2+7 x+15$
- $y^2=37 x^6+67 x^5+6 x^4+60 x^3+57 x^2+45 x+62$
- $y^2=43 x^6+36 x^5+48 x^4+4 x^3+53 x^2+58 x+5$
- $y^2=54 x^6+20 x^5+69 x^4+68 x^3+36 x^2+70 x+62$
- $y^2=41 x^6+54 x^5+69 x^4+38 x^3+52 x^2+45 x+8$
- $y^2=26 x^6+3 x^5+36 x^4+25 x^3+34 x^2+72 x+16$
- $y^2=41 x^6+72 x^5+x^4+15 x^2+10 x+21$
- $y^2=27 x^6+44 x^5+65 x^4+62 x^3+28 x^2+27 x+47$
- $y^2=71 x^6+19 x^5+8 x^4+2 x^3+35 x^2+68 x+10$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ao $\times$ 1.73.aj and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.af_u | $2$ | (not in LMFDB) |
| 2.73.f_u | $2$ | (not in LMFDB) |
| 2.73.x_km | $2$ | (not in LMFDB) |