| L(s) = 1 | − 2·4-s − 10·7-s − 3·9-s + 2·13-s + 15·19-s − 10·25-s + 20·28-s − 11·31-s + 6·36-s + 37-s − 3·43-s + 61·49-s − 4·52-s − 61-s + 30·63-s + 8·64-s + 11·67-s + 10·73-s − 30·76-s − 30·79-s + 9·81-s − 20·91-s − 33·97-s + 20·100-s − 33·103-s − 6·117-s + 11·121-s + ⋯ |
| L(s) = 1 | − 4-s − 3.77·7-s − 9-s + 0.554·13-s + 3.44·19-s − 2·25-s + 3.77·28-s − 1.97·31-s + 36-s + 0.164·37-s − 0.457·43-s + 61/7·49-s − 0.554·52-s − 0.128·61-s + 3.77·63-s + 64-s + 1.34·67-s + 1.17·73-s − 3.44·76-s − 3.37·79-s + 81-s − 2.09·91-s − 3.35·97-s + 2·100-s − 3.25·103-s − 0.554·117-s + 121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1212201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1212201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.27976356210723365170189569376, −7.26155877756811501087228708745, −6.71114593337755081526564582399, −6.13027085184381531415104668699, −5.84477945575599569033934225657, −5.39521909854607518216988586460, −5.25925738046771771539722303077, −3.94910170803881289686748638135, −3.66829638301627508503104266936, −3.61484332739913987643154053630, −2.77200370882739367660359438765, −2.72553058576893774849951458652, −1.18497641861601885699543675300, 0, 0,
1.18497641861601885699543675300, 2.72553058576893774849951458652, 2.77200370882739367660359438765, 3.61484332739913987643154053630, 3.66829638301627508503104266936, 3.94910170803881289686748638135, 5.25925738046771771539722303077, 5.39521909854607518216988586460, 5.84477945575599569033934225657, 6.13027085184381531415104668699, 6.71114593337755081526564582399, 7.26155877756811501087228708745, 7.27976356210723365170189569376