Properties

Label 8-600e4-1.1-c5e4-0-3
Degree $8$
Conductor $129600000000$
Sign $1$
Analytic cond. $8.57525\times 10^{7}$
Root an. cond. $9.80970$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 162·9-s + 128·11-s − 5.28e3·19-s − 3.88e3·29-s + 1.26e4·31-s + 4.80e3·41-s + 1.94e4·49-s − 1.03e4·59-s − 1.07e5·61-s − 1.43e5·71-s − 5.85e4·79-s + 1.96e4·81-s + 2.79e5·89-s − 2.07e4·99-s − 1.00e5·101-s − 2.48e4·109-s + 1.28e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3.78e5·169-s + ⋯
L(s)  = 1  − 2/3·9-s + 0.318·11-s − 3.35·19-s − 0.856·29-s + 2.36·31-s + 0.446·41-s + 1.15·49-s − 0.387·59-s − 3.71·61-s − 3.36·71-s − 1.05·79-s + 1/3·81-s + 3.73·89-s − 0.212·99-s − 0.975·101-s − 0.200·109-s + 0.797·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 1.02·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(8.57525\times 10^{7}\)
Root analytic conductor: \(9.80970\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.990735659\)
\(L(\frac12)\) \(\approx\) \(1.990735659\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 19452 T^{2} + 653446630 T^{4} - 19452 p^{10} T^{6} + p^{20} T^{8} \)
11$D_{4}$ \( ( 1 - 64 T - 5278 p T^{2} - 64 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 378892 T^{2} + 21095389878 T^{4} - 378892 p^{10} T^{6} + p^{20} T^{8} \)
17$D_4\times C_2$ \( 1 - 2146780 T^{2} + 2395021035398 T^{4} - 2146780 p^{10} T^{6} + p^{20} T^{8} \)
19$D_{4}$ \( ( 1 + 2640 T + 5527222 T^{2} + 2640 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 20045156 T^{2} + 183268460410982 T^{4} + 20045156 p^{10} T^{6} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 + 1940 T + 17567422 T^{2} + 1940 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 6328 T + 63242942 T^{2} - 6328 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 212769516 T^{2} + 20570809389128662 T^{4} - 212769516 p^{10} T^{6} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 - 2404 T - 34529258 T^{2} - 2404 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 2098380 T^{2} + 4366275807638998 T^{4} - 2098380 p^{10} T^{6} + p^{20} T^{8} \)
47$D_4\times C_2$ \( 1 - 161331324 T^{2} + 93283739073012038 T^{4} - 161331324 p^{10} T^{6} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 - 1302086668 T^{2} + 752861101325672150 T^{4} - 1302086668 p^{10} T^{6} + p^{20} T^{8} \)
59$D_{4}$ \( ( 1 + 5184 T + 1405691158 T^{2} + 5184 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 53956 T + 1627858910 T^{2} + 53956 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 503801516 T^{2} + 2038466458659863862 T^{4} - 503801516 p^{10} T^{6} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 + 71552 T + 3857659342 T^{2} + 71552 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 3629392476 T^{2} + 11739219546601563238 T^{4} - 3629392476 p^{10} T^{6} + p^{20} T^{8} \)
79$D_{4}$ \( ( 1 + 29288 T + 5671921950 T^{2} + 29288 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 3772878572 T^{2} + 16627424423525289078 T^{4} - 3772878572 p^{10} T^{6} + p^{20} T^{8} \)
89$D_{4}$ \( ( 1 - 139724 T + 16006792406 T^{2} - 139724 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 28290762620 T^{2} + \)\(34\!\cdots\!98\)\( T^{4} - 28290762620 p^{10} T^{6} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.76210856812733744793469482779, −6.56809886319925250501344901929, −6.23560757775943356062830494647, −6.21814440460662437111486082010, −6.07222842357958605247297602895, −5.71876858860385753073960349767, −5.63544298962072722362313748365, −4.97261436810029709046749478066, −4.88710479832377492750257334827, −4.70007637495362086866289280637, −4.21078956707216910378183774548, −4.19668915613754132020833983454, −4.11014340641706708122049132462, −3.67362157822989896089421806025, −3.13417418336559793844734134532, −2.96299604677496093885664414843, −2.78189694337142155378575523067, −2.57562050260539505563010473204, −1.92026224120640020717054094414, −1.85710028849166342307203775310, −1.76581930506660553804171429128, −1.12230313700986887762332659604, −0.850263902464793556735348616544, −0.29669844635832454034213775346, −0.28980174167978512633002515247, 0.28980174167978512633002515247, 0.29669844635832454034213775346, 0.850263902464793556735348616544, 1.12230313700986887762332659604, 1.76581930506660553804171429128, 1.85710028849166342307203775310, 1.92026224120640020717054094414, 2.57562050260539505563010473204, 2.78189694337142155378575523067, 2.96299604677496093885664414843, 3.13417418336559793844734134532, 3.67362157822989896089421806025, 4.11014340641706708122049132462, 4.19668915613754132020833983454, 4.21078956707216910378183774548, 4.70007637495362086866289280637, 4.88710479832377492750257334827, 4.97261436810029709046749478066, 5.63544298962072722362313748365, 5.71876858860385753073960349767, 6.07222842357958605247297602895, 6.21814440460662437111486082010, 6.23560757775943356062830494647, 6.56809886319925250501344901929, 6.76210856812733744793469482779

Graph of the $Z$-function along the critical line