Properties

Label 600.6.f.k.49.1
Level $600$
Weight $6$
Character 600.49
Analytic conductor $96.230$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-324,0,128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1489})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 745x^{2} + 138384 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(18.7938i\) of defining polynomial
Character \(\chi\) \(=\) 600.49
Dual form 600.6.f.k.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000i q^{3} -146.350i q^{7} -81.0000 q^{9} +649.401 q^{11} -118.949i q^{13} +1853.75i q^{17} -2400.45 q^{19} -1317.15 q^{21} +4764.86i q^{23} +729.000i q^{27} -5909.21 q^{29} +5170.55 q^{31} -5844.61i q^{33} -3636.26i q^{37} -1070.54 q^{39} -15159.1 q^{41} -22138.0i q^{43} +22666.1i q^{47} -4611.40 q^{49} +16683.8 q^{51} +6420.69i q^{53} +21604.1i q^{57} +2964.61 q^{59} +1113.75 q^{61} +11854.4i q^{63} +33997.2i q^{67} +42883.7 q^{69} -3671.15 q^{71} +44104.9i q^{73} -95040.0i q^{77} -41037.9 q^{79} +6561.00 q^{81} +101143. i q^{83} +53182.9i q^{87} +63379.3 q^{89} -17408.3 q^{91} -46535.0i q^{93} -70291.7i q^{97} -52601.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 324 q^{9} + 128 q^{11} - 5280 q^{19} + 288 q^{21} - 3880 q^{29} + 12656 q^{31} - 20952 q^{39} + 4808 q^{41} - 28324 q^{49} + 38952 q^{51} - 10368 q^{59} - 107912 q^{61} - 720 q^{69} - 143104 q^{71}+ \cdots - 10368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 9.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 146.350i − 1.12888i −0.825474 0.564441i \(-0.809092\pi\)
0.825474 0.564441i \(-0.190908\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 649.401 1.61820 0.809098 0.587673i \(-0.199956\pi\)
0.809098 + 0.587673i \(0.199956\pi\)
\(12\) 0 0
\(13\) − 118.949i − 0.195211i −0.995225 0.0976053i \(-0.968882\pi\)
0.995225 0.0976053i \(-0.0311183\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1853.75i 1.55571i 0.628443 + 0.777856i \(0.283693\pi\)
−0.628443 + 0.777856i \(0.716307\pi\)
\(18\) 0 0
\(19\) −2400.45 −1.52549 −0.762744 0.646700i \(-0.776149\pi\)
−0.762744 + 0.646700i \(0.776149\pi\)
\(20\) 0 0
\(21\) −1317.15 −0.651760
\(22\) 0 0
\(23\) 4764.86i 1.87815i 0.343712 + 0.939075i \(0.388316\pi\)
−0.343712 + 0.939075i \(0.611684\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 729.000i 0.192450i
\(28\) 0 0
\(29\) −5909.21 −1.30477 −0.652385 0.757887i \(-0.726232\pi\)
−0.652385 + 0.757887i \(0.726232\pi\)
\(30\) 0 0
\(31\) 5170.55 0.966346 0.483173 0.875525i \(-0.339484\pi\)
0.483173 + 0.875525i \(0.339484\pi\)
\(32\) 0 0
\(33\) − 5844.61i − 0.934266i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 3636.26i − 0.436667i −0.975874 0.218334i \(-0.929938\pi\)
0.975874 0.218334i \(-0.0700621\pi\)
\(38\) 0 0
\(39\) −1070.54 −0.112705
\(40\) 0 0
\(41\) −15159.1 −1.40836 −0.704181 0.710020i \(-0.748686\pi\)
−0.704181 + 0.710020i \(0.748686\pi\)
\(42\) 0 0
\(43\) − 22138.0i − 1.82586i −0.408116 0.912930i \(-0.633814\pi\)
0.408116 0.912930i \(-0.366186\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 22666.1i 1.49669i 0.663311 + 0.748344i \(0.269151\pi\)
−0.663311 + 0.748344i \(0.730849\pi\)
\(48\) 0 0
\(49\) −4611.40 −0.274374
\(50\) 0 0
\(51\) 16683.8 0.898191
\(52\) 0 0
\(53\) 6420.69i 0.313973i 0.987601 + 0.156986i \(0.0501779\pi\)
−0.987601 + 0.156986i \(0.949822\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 21604.1i 0.880741i
\(58\) 0 0
\(59\) 2964.61 0.110876 0.0554380 0.998462i \(-0.482344\pi\)
0.0554380 + 0.998462i \(0.482344\pi\)
\(60\) 0 0
\(61\) 1113.75 0.0383232 0.0191616 0.999816i \(-0.493900\pi\)
0.0191616 + 0.999816i \(0.493900\pi\)
\(62\) 0 0
\(63\) 11854.4i 0.376294i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 33997.2i 0.925243i 0.886556 + 0.462622i \(0.153091\pi\)
−0.886556 + 0.462622i \(0.846909\pi\)
\(68\) 0 0
\(69\) 42883.7 1.08435
\(70\) 0 0
\(71\) −3671.15 −0.0864283 −0.0432142 0.999066i \(-0.513760\pi\)
−0.0432142 + 0.999066i \(0.513760\pi\)
\(72\) 0 0
\(73\) 44104.9i 0.968678i 0.874880 + 0.484339i \(0.160940\pi\)
−0.874880 + 0.484339i \(0.839060\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 95040.0i − 1.82675i
\(78\) 0 0
\(79\) −41037.9 −0.739805 −0.369903 0.929071i \(-0.620609\pi\)
−0.369903 + 0.929071i \(0.620609\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 101143.i 1.61154i 0.592227 + 0.805771i \(0.298249\pi\)
−0.592227 + 0.805771i \(0.701751\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 53182.9i 0.753310i
\(88\) 0 0
\(89\) 63379.3 0.848149 0.424075 0.905627i \(-0.360599\pi\)
0.424075 + 0.905627i \(0.360599\pi\)
\(90\) 0 0
\(91\) −17408.3 −0.220370
\(92\) 0 0
\(93\) − 46535.0i − 0.557920i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 70291.7i − 0.758533i −0.925287 0.379267i \(-0.876176\pi\)
0.925287 0.379267i \(-0.123824\pi\)
\(98\) 0 0
\(99\) −52601.5 −0.539399
\(100\) 0 0
\(101\) −44145.4 −0.430608 −0.215304 0.976547i \(-0.569074\pi\)
−0.215304 + 0.976547i \(0.569074\pi\)
\(102\) 0 0
\(103\) − 37009.4i − 0.343731i −0.985120 0.171866i \(-0.945020\pi\)
0.985120 0.171866i \(-0.0549795\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 54879.8i 0.463397i 0.972788 + 0.231698i \(0.0744282\pi\)
−0.972788 + 0.231698i \(0.925572\pi\)
\(108\) 0 0
\(109\) −112407. −0.906206 −0.453103 0.891458i \(-0.649683\pi\)
−0.453103 + 0.891458i \(0.649683\pi\)
\(110\) 0 0
\(111\) −32726.3 −0.252110
\(112\) 0 0
\(113\) 206991.i 1.52495i 0.647018 + 0.762474i \(0.276016\pi\)
−0.647018 + 0.762474i \(0.723984\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9634.89i 0.0650702i
\(118\) 0 0
\(119\) 271297. 1.75621
\(120\) 0 0
\(121\) 260671. 1.61856
\(122\) 0 0
\(123\) 136432.i 0.813119i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 22883.3i − 0.125895i −0.998017 0.0629475i \(-0.979950\pi\)
0.998017 0.0629475i \(-0.0200501\pi\)
\(128\) 0 0
\(129\) −199242. −1.05416
\(130\) 0 0
\(131\) 49165.6 0.250313 0.125156 0.992137i \(-0.460057\pi\)
0.125156 + 0.992137i \(0.460057\pi\)
\(132\) 0 0
\(133\) 351307.i 1.72210i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 189263.i 0.861518i 0.902467 + 0.430759i \(0.141754\pi\)
−0.902467 + 0.430759i \(0.858246\pi\)
\(138\) 0 0
\(139\) −247755. −1.08764 −0.543820 0.839202i \(-0.683023\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(140\) 0 0
\(141\) 203995. 0.864113
\(142\) 0 0
\(143\) − 77245.8i − 0.315889i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 41502.6i 0.158410i
\(148\) 0 0
\(149\) −95894.1 −0.353856 −0.176928 0.984224i \(-0.556616\pi\)
−0.176928 + 0.984224i \(0.556616\pi\)
\(150\) 0 0
\(151\) 414806. 1.48048 0.740241 0.672342i \(-0.234711\pi\)
0.740241 + 0.672342i \(0.234711\pi\)
\(152\) 0 0
\(153\) − 150154.i − 0.518571i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 218866.i 0.708645i 0.935123 + 0.354322i \(0.115288\pi\)
−0.935123 + 0.354322i \(0.884712\pi\)
\(158\) 0 0
\(159\) 57786.2 0.181272
\(160\) 0 0
\(161\) 697338. 2.12021
\(162\) 0 0
\(163\) 411608.i 1.21343i 0.794920 + 0.606715i \(0.207513\pi\)
−0.794920 + 0.606715i \(0.792487\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 189476.i − 0.525730i −0.964833 0.262865i \(-0.915333\pi\)
0.964833 0.262865i \(-0.0846675\pi\)
\(168\) 0 0
\(169\) 357144. 0.961893
\(170\) 0 0
\(171\) 194437. 0.508496
\(172\) 0 0
\(173\) 150896.i 0.383320i 0.981461 + 0.191660i \(0.0613871\pi\)
−0.981461 + 0.191660i \(0.938613\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 26681.5i − 0.0640143i
\(178\) 0 0
\(179\) 409591. 0.955473 0.477736 0.878503i \(-0.341457\pi\)
0.477736 + 0.878503i \(0.341457\pi\)
\(180\) 0 0
\(181\) 321345. 0.729080 0.364540 0.931188i \(-0.381226\pi\)
0.364540 + 0.931188i \(0.381226\pi\)
\(182\) 0 0
\(183\) − 10023.7i − 0.0221259i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.20383e6i 2.51745i
\(188\) 0 0
\(189\) 106689. 0.217253
\(190\) 0 0
\(191\) 204362. 0.405338 0.202669 0.979247i \(-0.435039\pi\)
0.202669 + 0.979247i \(0.435039\pi\)
\(192\) 0 0
\(193\) − 420929.i − 0.813422i −0.913557 0.406711i \(-0.866676\pi\)
0.913557 0.406711i \(-0.133324\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 492903.i − 0.904891i −0.891792 0.452445i \(-0.850552\pi\)
0.891792 0.452445i \(-0.149448\pi\)
\(198\) 0 0
\(199\) −312259. −0.558962 −0.279481 0.960151i \(-0.590162\pi\)
−0.279481 + 0.960151i \(0.590162\pi\)
\(200\) 0 0
\(201\) 305975. 0.534189
\(202\) 0 0
\(203\) 864814.i 1.47293i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 385953.i − 0.626050i
\(208\) 0 0
\(209\) −1.55886e6 −2.46854
\(210\) 0 0
\(211\) −991009. −1.53240 −0.766199 0.642604i \(-0.777854\pi\)
−0.766199 + 0.642604i \(0.777854\pi\)
\(212\) 0 0
\(213\) 33040.3i 0.0498994i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 756712.i − 1.09089i
\(218\) 0 0
\(219\) 396944. 0.559267
\(220\) 0 0
\(221\) 220502. 0.303691
\(222\) 0 0
\(223\) 1.25333e6i 1.68773i 0.536557 + 0.843864i \(0.319725\pi\)
−0.536557 + 0.843864i \(0.680275\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 479319.i 0.617390i 0.951161 + 0.308695i \(0.0998923\pi\)
−0.951161 + 0.308695i \(0.900108\pi\)
\(228\) 0 0
\(229\) 1.09794e6 1.38353 0.691767 0.722120i \(-0.256832\pi\)
0.691767 + 0.722120i \(0.256832\pi\)
\(230\) 0 0
\(231\) −855360. −1.05468
\(232\) 0 0
\(233\) 539999.i 0.651633i 0.945433 + 0.325817i \(0.105639\pi\)
−0.945433 + 0.325817i \(0.894361\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 369341.i 0.427127i
\(238\) 0 0
\(239\) −1.25769e6 −1.42422 −0.712112 0.702065i \(-0.752261\pi\)
−0.712112 + 0.702065i \(0.752261\pi\)
\(240\) 0 0
\(241\) 110008. 0.122006 0.0610028 0.998138i \(-0.480570\pi\)
0.0610028 + 0.998138i \(0.480570\pi\)
\(242\) 0 0
\(243\) − 59049.0i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 285532.i 0.297791i
\(248\) 0 0
\(249\) 910289. 0.930424
\(250\) 0 0
\(251\) −373992. −0.374695 −0.187347 0.982294i \(-0.559989\pi\)
−0.187347 + 0.982294i \(0.559989\pi\)
\(252\) 0 0
\(253\) 3.09430e6i 3.03922i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.26750e6i 1.19706i 0.801100 + 0.598531i \(0.204249\pi\)
−0.801100 + 0.598531i \(0.795751\pi\)
\(258\) 0 0
\(259\) −532167. −0.492945
\(260\) 0 0
\(261\) 478646. 0.434924
\(262\) 0 0
\(263\) 42575.9i 0.0379555i 0.999820 + 0.0189778i \(0.00604117\pi\)
−0.999820 + 0.0189778i \(0.993959\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 570414.i − 0.489679i
\(268\) 0 0
\(269\) 2.01104e6 1.69449 0.847247 0.531198i \(-0.178258\pi\)
0.847247 + 0.531198i \(0.178258\pi\)
\(270\) 0 0
\(271\) 1.81113e6 1.49805 0.749023 0.662544i \(-0.230523\pi\)
0.749023 + 0.662544i \(0.230523\pi\)
\(272\) 0 0
\(273\) 156674.i 0.127230i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1.15345e6i − 0.903231i −0.892213 0.451616i \(-0.850848\pi\)
0.892213 0.451616i \(-0.149152\pi\)
\(278\) 0 0
\(279\) −418815. −0.322115
\(280\) 0 0
\(281\) 1.67992e6 1.26918 0.634589 0.772849i \(-0.281169\pi\)
0.634589 + 0.772849i \(0.281169\pi\)
\(282\) 0 0
\(283\) − 756853.i − 0.561753i −0.959744 0.280877i \(-0.909375\pi\)
0.959744 0.280877i \(-0.0906252\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.21854e6i 1.58987i
\(288\) 0 0
\(289\) −2.01654e6 −1.42024
\(290\) 0 0
\(291\) −632625. −0.437939
\(292\) 0 0
\(293\) − 2.22662e6i − 1.51523i −0.652704 0.757613i \(-0.726366\pi\)
0.652704 0.757613i \(-0.273634\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 473413.i 0.311422i
\(298\) 0 0
\(299\) 566776. 0.366635
\(300\) 0 0
\(301\) −3.23990e6 −2.06118
\(302\) 0 0
\(303\) 397309.i 0.248612i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 270015.i − 0.163509i −0.996652 0.0817545i \(-0.973948\pi\)
0.996652 0.0817545i \(-0.0260524\pi\)
\(308\) 0 0
\(309\) −333085. −0.198453
\(310\) 0 0
\(311\) −1.24052e6 −0.727280 −0.363640 0.931539i \(-0.618466\pi\)
−0.363640 + 0.931539i \(0.618466\pi\)
\(312\) 0 0
\(313\) − 316675.i − 0.182706i −0.995819 0.0913529i \(-0.970881\pi\)
0.995819 0.0913529i \(-0.0291191\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 983045.i − 0.549446i −0.961523 0.274723i \(-0.911414\pi\)
0.961523 0.274723i \(-0.0885862\pi\)
\(318\) 0 0
\(319\) −3.83745e6 −2.11138
\(320\) 0 0
\(321\) 493918. 0.267542
\(322\) 0 0
\(323\) − 4.44984e6i − 2.37322i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.01166e6i 0.523198i
\(328\) 0 0
\(329\) 3.31718e6 1.68958
\(330\) 0 0
\(331\) −1.01843e6 −0.510927 −0.255464 0.966819i \(-0.582228\pi\)
−0.255464 + 0.966819i \(0.582228\pi\)
\(332\) 0 0
\(333\) 294537.i 0.145556i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.23120e6i − 0.590544i −0.955413 0.295272i \(-0.904590\pi\)
0.955413 0.295272i \(-0.0954102\pi\)
\(338\) 0 0
\(339\) 1.86292e6 0.880430
\(340\) 0 0
\(341\) 3.35776e6 1.56374
\(342\) 0 0
\(343\) − 1.78483e6i − 0.819146i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 727325.i 0.324269i 0.986769 + 0.162134i \(0.0518378\pi\)
−0.986769 + 0.162134i \(0.948162\pi\)
\(348\) 0 0
\(349\) 166838. 0.0733214 0.0366607 0.999328i \(-0.488328\pi\)
0.0366607 + 0.999328i \(0.488328\pi\)
\(350\) 0 0
\(351\) 86714.0 0.0375683
\(352\) 0 0
\(353\) − 826694.i − 0.353108i −0.984291 0.176554i \(-0.943505\pi\)
0.984291 0.176554i \(-0.0564951\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2.44167e6i − 1.01395i
\(358\) 0 0
\(359\) −911164. −0.373130 −0.186565 0.982443i \(-0.559735\pi\)
−0.186565 + 0.982443i \(0.559735\pi\)
\(360\) 0 0
\(361\) 3.28607e6 1.32712
\(362\) 0 0
\(363\) − 2.34604e6i − 0.934476i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 417688.i − 0.161878i −0.996719 0.0809389i \(-0.974208\pi\)
0.996719 0.0809389i \(-0.0257919\pi\)
\(368\) 0 0
\(369\) 1.22789e6 0.469454
\(370\) 0 0
\(371\) 939670. 0.354438
\(372\) 0 0
\(373\) 1.82262e6i 0.678303i 0.940732 + 0.339151i \(0.110140\pi\)
−0.940732 + 0.339151i \(0.889860\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 702896.i 0.254705i
\(378\) 0 0
\(379\) −1.13976e6 −0.407583 −0.203792 0.979014i \(-0.565326\pi\)
−0.203792 + 0.979014i \(0.565326\pi\)
\(380\) 0 0
\(381\) −205949. −0.0726855
\(382\) 0 0
\(383\) 2.37135e6i 0.826036i 0.910723 + 0.413018i \(0.135525\pi\)
−0.910723 + 0.413018i \(0.864475\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.79318e6i 0.608620i
\(388\) 0 0
\(389\) 1.44160e6 0.483025 0.241513 0.970398i \(-0.422356\pi\)
0.241513 + 0.970398i \(0.422356\pi\)
\(390\) 0 0
\(391\) −8.83286e6 −2.92186
\(392\) 0 0
\(393\) − 442490.i − 0.144518i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 843782.i − 0.268691i −0.990935 0.134346i \(-0.957107\pi\)
0.990935 0.134346i \(-0.0428933\pi\)
\(398\) 0 0
\(399\) 3.16176e6 0.994253
\(400\) 0 0
\(401\) −3.08091e6 −0.956795 −0.478397 0.878143i \(-0.658782\pi\)
−0.478397 + 0.878143i \(0.658782\pi\)
\(402\) 0 0
\(403\) − 615033.i − 0.188641i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2.36139e6i − 0.706613i
\(408\) 0 0
\(409\) −5.59642e6 −1.65425 −0.827126 0.562016i \(-0.810026\pi\)
−0.827126 + 0.562016i \(0.810026\pi\)
\(410\) 0 0
\(411\) 1.70337e6 0.497398
\(412\) 0 0
\(413\) − 433871.i − 0.125166i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.22979e6i 0.627949i
\(418\) 0 0
\(419\) −2.45597e6 −0.683420 −0.341710 0.939805i \(-0.611006\pi\)
−0.341710 + 0.939805i \(0.611006\pi\)
\(420\) 0 0
\(421\) 6.36693e6 1.75075 0.875376 0.483443i \(-0.160614\pi\)
0.875376 + 0.483443i \(0.160614\pi\)
\(422\) 0 0
\(423\) − 1.83595e6i − 0.498896i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 162997.i − 0.0432623i
\(428\) 0 0
\(429\) −695212. −0.182379
\(430\) 0 0
\(431\) −4.71463e6 −1.22252 −0.611258 0.791432i \(-0.709336\pi\)
−0.611258 + 0.791432i \(0.709336\pi\)
\(432\) 0 0
\(433\) 3.99653e6i 1.02438i 0.858871 + 0.512192i \(0.171166\pi\)
−0.858871 + 0.512192i \(0.828834\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.14378e7i − 2.86510i
\(438\) 0 0
\(439\) −328891. −0.0814500 −0.0407250 0.999170i \(-0.512967\pi\)
−0.0407250 + 0.999170i \(0.512967\pi\)
\(440\) 0 0
\(441\) 373523. 0.0914578
\(442\) 0 0
\(443\) 2.41671e6i 0.585081i 0.956253 + 0.292540i \(0.0945006\pi\)
−0.956253 + 0.292540i \(0.905499\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 863047.i 0.204299i
\(448\) 0 0
\(449\) 4.00121e6 0.936647 0.468323 0.883557i \(-0.344858\pi\)
0.468323 + 0.883557i \(0.344858\pi\)
\(450\) 0 0
\(451\) −9.84435e6 −2.27901
\(452\) 0 0
\(453\) − 3.73326e6i − 0.854756i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7.86212e6i − 1.76096i −0.474084 0.880480i \(-0.657221\pi\)
0.474084 0.880480i \(-0.342779\pi\)
\(458\) 0 0
\(459\) −1.35138e6 −0.299397
\(460\) 0 0
\(461\) −4.64530e6 −1.01803 −0.509016 0.860757i \(-0.669991\pi\)
−0.509016 + 0.860757i \(0.669991\pi\)
\(462\) 0 0
\(463\) 1.10561e6i 0.239690i 0.992793 + 0.119845i \(0.0382397\pi\)
−0.992793 + 0.119845i \(0.961760\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.73047e6i − 0.367175i −0.983003 0.183587i \(-0.941229\pi\)
0.983003 0.183587i \(-0.0587710\pi\)
\(468\) 0 0
\(469\) 4.97550e6 1.04449
\(470\) 0 0
\(471\) 1.96979e6 0.409136
\(472\) 0 0
\(473\) − 1.43764e7i − 2.95460i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 520076.i − 0.104658i
\(478\) 0 0
\(479\) 9.07136e6 1.80648 0.903241 0.429134i \(-0.141181\pi\)
0.903241 + 0.429134i \(0.141181\pi\)
\(480\) 0 0
\(481\) −432530. −0.0852420
\(482\) 0 0
\(483\) − 6.27604e6i − 1.22410i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.55244e6i 0.678741i 0.940653 + 0.339370i \(0.110214\pi\)
−0.940653 + 0.339370i \(0.889786\pi\)
\(488\) 0 0
\(489\) 3.70447e6 0.700574
\(490\) 0 0
\(491\) −8.51045e6 −1.59312 −0.796560 0.604559i \(-0.793349\pi\)
−0.796560 + 0.604559i \(0.793349\pi\)
\(492\) 0 0
\(493\) − 1.09542e7i − 2.02985i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 537273.i 0.0975673i
\(498\) 0 0
\(499\) 566565. 0.101859 0.0509294 0.998702i \(-0.483782\pi\)
0.0509294 + 0.998702i \(0.483782\pi\)
\(500\) 0 0
\(501\) −1.70528e6 −0.303531
\(502\) 0 0
\(503\) 3.80262e6i 0.670135i 0.942194 + 0.335068i \(0.108759\pi\)
−0.942194 + 0.335068i \(0.891241\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.21430e6i − 0.555349i
\(508\) 0 0
\(509\) 2.73265e6 0.467508 0.233754 0.972296i \(-0.424899\pi\)
0.233754 + 0.972296i \(0.424899\pi\)
\(510\) 0 0
\(511\) 6.45476e6 1.09352
\(512\) 0 0
\(513\) − 1.74993e6i − 0.293580i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.47194e7i 2.42194i
\(518\) 0 0
\(519\) 1.35806e6 0.221310
\(520\) 0 0
\(521\) −6.32941e6 −1.02157 −0.510786 0.859708i \(-0.670645\pi\)
−0.510786 + 0.859708i \(0.670645\pi\)
\(522\) 0 0
\(523\) 4.73315e6i 0.756651i 0.925673 + 0.378326i \(0.123500\pi\)
−0.925673 + 0.378326i \(0.876500\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.58492e6i 1.50336i
\(528\) 0 0
\(529\) −1.62675e7 −2.52745
\(530\) 0 0
\(531\) −240133. −0.0369587
\(532\) 0 0
\(533\) 1.80317e6i 0.274927i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 3.68632e6i − 0.551642i
\(538\) 0 0
\(539\) −2.99465e6 −0.443990
\(540\) 0 0
\(541\) −7.95329e6 −1.16830 −0.584149 0.811647i \(-0.698572\pi\)
−0.584149 + 0.811647i \(0.698572\pi\)
\(542\) 0 0
\(543\) − 2.89211e6i − 0.420935i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 8.47929e6i − 1.21169i −0.795583 0.605844i \(-0.792835\pi\)
0.795583 0.605844i \(-0.207165\pi\)
\(548\) 0 0
\(549\) −90213.4 −0.0127744
\(550\) 0 0
\(551\) 1.41848e7 1.99041
\(552\) 0 0
\(553\) 6.00591e6i 0.835152i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 3.41411e6i − 0.466272i −0.972444 0.233136i \(-0.925101\pi\)
0.972444 0.233136i \(-0.0748988\pi\)
\(558\) 0 0
\(559\) −2.63330e6 −0.356427
\(560\) 0 0
\(561\) 1.08345e7 1.45345
\(562\) 0 0
\(563\) − 1.20757e7i − 1.60561i −0.596243 0.802804i \(-0.703340\pi\)
0.596243 0.802804i \(-0.296660\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 960204.i − 0.125431i
\(568\) 0 0
\(569\) −3.01621e6 −0.390554 −0.195277 0.980748i \(-0.562561\pi\)
−0.195277 + 0.980748i \(0.562561\pi\)
\(570\) 0 0
\(571\) −1.38871e7 −1.78247 −0.891235 0.453542i \(-0.850160\pi\)
−0.891235 + 0.453542i \(0.850160\pi\)
\(572\) 0 0
\(573\) − 1.83926e6i − 0.234022i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.84090e6i 0.355235i 0.984100 + 0.177618i \(0.0568390\pi\)
−0.984100 + 0.177618i \(0.943161\pi\)
\(578\) 0 0
\(579\) −3.78836e6 −0.469629
\(580\) 0 0
\(581\) 1.48023e7 1.81924
\(582\) 0 0
\(583\) 4.16960e6i 0.508070i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.94501e6i 0.831912i 0.909385 + 0.415956i \(0.136553\pi\)
−0.909385 + 0.415956i \(0.863447\pi\)
\(588\) 0 0
\(589\) −1.24117e7 −1.47415
\(590\) 0 0
\(591\) −4.43613e6 −0.522439
\(592\) 0 0
\(593\) 3.67971e6i 0.429712i 0.976646 + 0.214856i \(0.0689282\pi\)
−0.976646 + 0.214856i \(0.931072\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.81033e6i 0.322717i
\(598\) 0 0
\(599\) 1.13529e7 1.29282 0.646411 0.762990i \(-0.276269\pi\)
0.646411 + 0.762990i \(0.276269\pi\)
\(600\) 0 0
\(601\) −127107. −0.0143543 −0.00717715 0.999974i \(-0.502285\pi\)
−0.00717715 + 0.999974i \(0.502285\pi\)
\(602\) 0 0
\(603\) − 2.75377e6i − 0.308414i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.39012e7i 1.53138i 0.643213 + 0.765688i \(0.277601\pi\)
−0.643213 + 0.765688i \(0.722399\pi\)
\(608\) 0 0
\(609\) 7.78333e6 0.850398
\(610\) 0 0
\(611\) 2.69611e6 0.292169
\(612\) 0 0
\(613\) 9.80675e6i 1.05408i 0.849840 + 0.527040i \(0.176698\pi\)
−0.849840 + 0.527040i \(0.823302\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 8.11020e6i − 0.857667i −0.903384 0.428833i \(-0.858925\pi\)
0.903384 0.428833i \(-0.141075\pi\)
\(618\) 0 0
\(619\) −1.01637e7 −1.06617 −0.533083 0.846063i \(-0.678967\pi\)
−0.533083 + 0.846063i \(0.678967\pi\)
\(620\) 0 0
\(621\) −3.47358e6 −0.361450
\(622\) 0 0
\(623\) − 9.27557e6i − 0.957460i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.40297e7i 1.42521i
\(628\) 0 0
\(629\) 6.74072e6 0.679328
\(630\) 0 0
\(631\) −9.29395e6 −0.929238 −0.464619 0.885511i \(-0.653809\pi\)
−0.464619 + 0.885511i \(0.653809\pi\)
\(632\) 0 0
\(633\) 8.91908e6i 0.884730i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 548522.i 0.0535606i
\(638\) 0 0
\(639\) 297363. 0.0288094
\(640\) 0 0
\(641\) −1.40969e7 −1.35512 −0.677559 0.735468i \(-0.736962\pi\)
−0.677559 + 0.735468i \(0.736962\pi\)
\(642\) 0 0
\(643\) 8.27016e6i 0.788836i 0.918931 + 0.394418i \(0.129054\pi\)
−0.918931 + 0.394418i \(0.870946\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 4.31832e6i − 0.405559i −0.979224 0.202779i \(-0.935003\pi\)
0.979224 0.202779i \(-0.0649974\pi\)
\(648\) 0 0
\(649\) 1.92522e6 0.179419
\(650\) 0 0
\(651\) −6.81041e6 −0.629826
\(652\) 0 0
\(653\) − 1.89476e7i − 1.73888i −0.494037 0.869441i \(-0.664479\pi\)
0.494037 0.869441i \(-0.335521\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.57250e6i − 0.322893i
\(658\) 0 0
\(659\) −6.91261e6 −0.620053 −0.310026 0.950728i \(-0.600338\pi\)
−0.310026 + 0.950728i \(0.600338\pi\)
\(660\) 0 0
\(661\) 5.82317e6 0.518389 0.259195 0.965825i \(-0.416543\pi\)
0.259195 + 0.965825i \(0.416543\pi\)
\(662\) 0 0
\(663\) − 1.98452e6i − 0.175336i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.81565e7i − 2.45056i
\(668\) 0 0
\(669\) 1.12800e7 0.974410
\(670\) 0 0
\(671\) 723268. 0.0620144
\(672\) 0 0
\(673\) 1.75215e7i 1.49119i 0.666400 + 0.745594i \(0.267834\pi\)
−0.666400 + 0.745594i \(0.732166\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.18408e7i 0.992908i 0.868063 + 0.496454i \(0.165365\pi\)
−0.868063 + 0.496454i \(0.834635\pi\)
\(678\) 0 0
\(679\) −1.02872e7 −0.856294
\(680\) 0 0
\(681\) 4.31387e6 0.356450
\(682\) 0 0
\(683\) 430258.i 0.0352921i 0.999844 + 0.0176460i \(0.00561720\pi\)
−0.999844 + 0.0176460i \(0.994383\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 9.88146e6i − 0.798784i
\(688\) 0 0
\(689\) 763736. 0.0612908
\(690\) 0 0
\(691\) 2.02121e7 1.61034 0.805169 0.593046i \(-0.202075\pi\)
0.805169 + 0.593046i \(0.202075\pi\)
\(692\) 0 0
\(693\) 7.69824e6i 0.608917i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.81012e7i − 2.19101i
\(698\) 0 0
\(699\) 4.85999e6 0.376221
\(700\) 0 0
\(701\) 1.11172e7 0.854475 0.427237 0.904139i \(-0.359487\pi\)
0.427237 + 0.904139i \(0.359487\pi\)
\(702\) 0 0
\(703\) 8.72866e6i 0.666131i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.46069e6i 0.486106i
\(708\) 0 0
\(709\) −4.24313e6 −0.317008 −0.158504 0.987358i \(-0.550667\pi\)
−0.158504 + 0.987358i \(0.550667\pi\)
\(710\) 0 0
\(711\) 3.32407e6 0.246602
\(712\) 0 0
\(713\) 2.46370e7i 1.81494i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.13192e7i 0.822277i
\(718\) 0 0
\(719\) −1.14107e7 −0.823172 −0.411586 0.911371i \(-0.635025\pi\)
−0.411586 + 0.911371i \(0.635025\pi\)
\(720\) 0 0
\(721\) −5.41634e6 −0.388032
\(722\) 0 0
\(723\) − 990068.i − 0.0704400i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.19426e7i 0.838038i 0.907977 + 0.419019i \(0.137626\pi\)
−0.907977 + 0.419019i \(0.862374\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 4.10384e7 2.84051
\(732\) 0 0
\(733\) 3.09667e6i 0.212880i 0.994319 + 0.106440i \(0.0339452\pi\)
−0.994319 + 0.106440i \(0.966055\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.20778e7i 1.49723i
\(738\) 0 0
\(739\) 1.27952e7 0.861861 0.430930 0.902385i \(-0.358185\pi\)
0.430930 + 0.902385i \(0.358185\pi\)
\(740\) 0 0
\(741\) 2.56979e6 0.171930
\(742\) 0 0
\(743\) 1.33759e7i 0.888897i 0.895805 + 0.444448i \(0.146600\pi\)
−0.895805 + 0.444448i \(0.853400\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 8.19260e6i − 0.537181i
\(748\) 0 0
\(749\) 8.03167e6 0.523120
\(750\) 0 0
\(751\) 1.73785e7 1.12438 0.562188 0.827009i \(-0.309960\pi\)
0.562188 + 0.827009i \(0.309960\pi\)
\(752\) 0 0
\(753\) 3.36593e6i 0.216330i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 8.53992e6i − 0.541644i −0.962629 0.270822i \(-0.912705\pi\)
0.962629 0.270822i \(-0.0872955\pi\)
\(758\) 0 0
\(759\) 2.78487e7 1.75469
\(760\) 0 0
\(761\) −2.72355e7 −1.70480 −0.852401 0.522888i \(-0.824855\pi\)
−0.852401 + 0.522888i \(0.824855\pi\)
\(762\) 0 0
\(763\) 1.64508e7i 1.02300i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 352638.i − 0.0216442i
\(768\) 0 0
\(769\) 1.97556e7 1.20469 0.602343 0.798237i \(-0.294234\pi\)
0.602343 + 0.798237i \(0.294234\pi\)
\(770\) 0 0
\(771\) 1.14075e7 0.691124
\(772\) 0 0
\(773\) − 1.13923e6i − 0.0685746i −0.999412 0.0342873i \(-0.989084\pi\)
0.999412 0.0342873i \(-0.0109161\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.78951e6i 0.284602i
\(778\) 0 0
\(779\) 3.63888e7 2.14844
\(780\) 0 0
\(781\) −2.38405e6 −0.139858
\(782\) 0 0
\(783\) − 4.30781e6i − 0.251103i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 5.80161e6i − 0.333897i −0.985966 0.166948i \(-0.946609\pi\)
0.985966 0.166948i \(-0.0533913\pi\)
\(788\) 0 0
\(789\) 383183. 0.0219136
\(790\) 0 0
\(791\) 3.02932e7 1.72149
\(792\) 0 0
\(793\) − 132479.i − 0.00748109i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.44645e7i 0.806597i 0.915068 + 0.403299i \(0.132136\pi\)
−0.915068 + 0.403299i \(0.867864\pi\)
\(798\) 0 0
\(799\) −4.20172e7 −2.32842
\(800\) 0 0
\(801\) −5.13372e6 −0.282716
\(802\) 0 0
\(803\) 2.86418e7i 1.56751i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.80994e7i − 0.978317i
\(808\) 0 0
\(809\) −2.19617e7 −1.17976 −0.589880 0.807491i \(-0.700825\pi\)
−0.589880 + 0.807491i \(0.700825\pi\)
\(810\) 0 0
\(811\) −1.33812e7 −0.714402 −0.357201 0.934028i \(-0.616269\pi\)
−0.357201 + 0.934028i \(0.616269\pi\)
\(812\) 0 0
\(813\) − 1.63001e7i − 0.864897i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5.31412e7i 2.78533i
\(818\) 0 0
\(819\) 1.41007e6 0.0734565
\(820\) 0 0
\(821\) 9.25548e6 0.479227 0.239613 0.970868i \(-0.422979\pi\)
0.239613 + 0.970868i \(0.422979\pi\)
\(822\) 0 0
\(823\) 4.88939e6i 0.251626i 0.992054 + 0.125813i \(0.0401539\pi\)
−0.992054 + 0.125813i \(0.959846\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.68085e6i − 0.0854606i −0.999087 0.0427303i \(-0.986394\pi\)
0.999087 0.0427303i \(-0.0136056\pi\)
\(828\) 0 0
\(829\) −2.21062e7 −1.11719 −0.558596 0.829440i \(-0.688660\pi\)
−0.558596 + 0.829440i \(0.688660\pi\)
\(830\) 0 0
\(831\) −1.03810e7 −0.521481
\(832\) 0 0
\(833\) − 8.54838e6i − 0.426846i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.76933e6i 0.185973i
\(838\) 0 0
\(839\) −9.64088e6 −0.472838 −0.236419 0.971651i \(-0.575974\pi\)
−0.236419 + 0.971651i \(0.575974\pi\)
\(840\) 0 0
\(841\) 1.44076e7 0.702427
\(842\) 0 0
\(843\) − 1.51193e7i − 0.732761i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.81492e7i − 1.82716i
\(848\) 0 0
\(849\) −6.81168e6 −0.324328
\(850\) 0 0
\(851\) 1.73263e7 0.820126
\(852\) 0 0
\(853\) 4.10226e6i 0.193042i 0.995331 + 0.0965208i \(0.0307714\pi\)
−0.995331 + 0.0965208i \(0.969229\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 6.30835e6i − 0.293402i −0.989181 0.146701i \(-0.953134\pi\)
0.989181 0.146701i \(-0.0468656\pi\)
\(858\) 0 0
\(859\) 8.57588e6 0.396548 0.198274 0.980147i \(-0.436466\pi\)
0.198274 + 0.980147i \(0.436466\pi\)
\(860\) 0 0
\(861\) 1.99669e7 0.917915
\(862\) 0 0
\(863\) 3.66361e7i 1.67449i 0.546828 + 0.837245i \(0.315835\pi\)
−0.546828 + 0.837245i \(0.684165\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.81488e7i 0.819976i
\(868\) 0 0
\(869\) −2.66500e7 −1.19715
\(870\) 0 0
\(871\) 4.04394e6 0.180617
\(872\) 0 0
\(873\) 5.69363e6i 0.252844i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.24157e7i 0.984132i 0.870558 + 0.492066i \(0.163758\pi\)
−0.870558 + 0.492066i \(0.836242\pi\)
\(878\) 0 0
\(879\) −2.00396e7 −0.874816
\(880\) 0 0
\(881\) −8.55161e6 −0.371200 −0.185600 0.982625i \(-0.559423\pi\)
−0.185600 + 0.982625i \(0.559423\pi\)
\(882\) 0 0
\(883\) − 7.16620e6i − 0.309305i −0.987969 0.154653i \(-0.950574\pi\)
0.987969 0.154653i \(-0.0494258\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 2.43138e7i − 1.03763i −0.854885 0.518817i \(-0.826372\pi\)
0.854885 0.518817i \(-0.173628\pi\)
\(888\) 0 0
\(889\) −3.34897e6 −0.142121
\(890\) 0 0
\(891\) 4.26072e6 0.179800
\(892\) 0 0
\(893\) − 5.44088e7i − 2.28318i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 5.10099e6i − 0.211677i
\(898\) 0 0
\(899\) −3.05539e7 −1.26086
\(900\) 0 0
\(901\) −1.19024e7 −0.488451
\(902\) 0 0
\(903\) 2.91591e7i 1.19002i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.63820e7i 1.46848i 0.678890 + 0.734240i \(0.262461\pi\)
−0.678890 + 0.734240i \(0.737539\pi\)
\(908\) 0 0
\(909\) 3.57578e6 0.143536
\(910\) 0 0
\(911\) −5.45897e6 −0.217929 −0.108964 0.994046i \(-0.534753\pi\)
−0.108964 + 0.994046i \(0.534753\pi\)
\(912\) 0 0
\(913\) 6.56825e7i 2.60779i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 7.19540e6i − 0.282573i
\(918\) 0 0
\(919\) 1.27369e7 0.497477 0.248739 0.968571i \(-0.419984\pi\)
0.248739 + 0.968571i \(0.419984\pi\)
\(920\) 0 0
\(921\) −2.43013e6 −0.0944020
\(922\) 0 0
\(923\) 436680.i 0.0168717i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.99776e6i 0.114577i
\(928\) 0 0
\(929\) −1.00615e7 −0.382492 −0.191246 0.981542i \(-0.561253\pi\)
−0.191246 + 0.981542i \(0.561253\pi\)
\(930\) 0 0
\(931\) 1.10694e7 0.418554
\(932\) 0 0
\(933\) 1.11647e7i 0.419896i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.63556e7i 1.35276i 0.736551 + 0.676382i \(0.236453\pi\)
−0.736551 + 0.676382i \(0.763547\pi\)
\(938\) 0 0
\(939\) −2.85007e6 −0.105485
\(940\) 0 0
\(941\) −3.12726e7 −1.15130 −0.575652 0.817695i \(-0.695252\pi\)
−0.575652 + 0.817695i \(0.695252\pi\)
\(942\) 0 0
\(943\) − 7.22311e7i − 2.64512i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.71083e7i 0.982261i 0.871086 + 0.491131i \(0.163416\pi\)
−0.871086 + 0.491131i \(0.836584\pi\)
\(948\) 0 0
\(949\) 5.24624e6 0.189096
\(950\) 0 0
\(951\) −8.84740e6 −0.317223
\(952\) 0 0
\(953\) − 3.57296e7i − 1.27437i −0.770710 0.637186i \(-0.780098\pi\)
0.770710 0.637186i \(-0.219902\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.45370e7i 1.21900i
\(958\) 0 0
\(959\) 2.76987e7 0.972552
\(960\) 0 0
\(961\) −1.89453e6 −0.0661749
\(962\) 0 0
\(963\) − 4.44526e6i − 0.154466i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.32985e7i − 0.801239i −0.916245 0.400619i \(-0.868795\pi\)
0.916245 0.400619i \(-0.131205\pi\)
\(968\) 0 0
\(969\) −4.00486e7 −1.37018
\(970\) 0 0
\(971\) −1.00397e7 −0.341722 −0.170861 0.985295i \(-0.554655\pi\)
−0.170861 + 0.985295i \(0.554655\pi\)
\(972\) 0 0
\(973\) 3.62590e7i 1.22782i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 3.37438e7i − 1.13099i −0.824753 0.565493i \(-0.808686\pi\)
0.824753 0.565493i \(-0.191314\pi\)
\(978\) 0 0
\(979\) 4.11586e7 1.37247
\(980\) 0 0
\(981\) 9.10496e6 0.302069
\(982\) 0 0
\(983\) 5.65485e7i 1.86654i 0.359175 + 0.933270i \(0.383058\pi\)
−0.359175 + 0.933270i \(0.616942\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 2.98546e7i − 0.975482i
\(988\) 0 0
\(989\) 1.05484e8 3.42924
\(990\) 0 0
\(991\) 5.32533e7 1.72251 0.861257 0.508170i \(-0.169678\pi\)
0.861257 + 0.508170i \(0.169678\pi\)
\(992\) 0 0
\(993\) 9.16583e6i 0.294984i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.28334e7i 0.408886i 0.978878 + 0.204443i \(0.0655383\pi\)
−0.978878 + 0.204443i \(0.934462\pi\)
\(998\) 0 0
\(999\) 2.65083e6 0.0840366
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.6.f.k.49.1 4
5.2 odd 4 600.6.a.k.1.2 2
5.3 odd 4 120.6.a.g.1.1 2
5.4 even 2 inner 600.6.f.k.49.4 4
15.8 even 4 360.6.a.n.1.1 2
20.3 even 4 240.6.a.o.1.2 2
40.3 even 4 960.6.a.bn.1.2 2
40.13 odd 4 960.6.a.bi.1.1 2
60.23 odd 4 720.6.a.bf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.a.g.1.1 2 5.3 odd 4
240.6.a.o.1.2 2 20.3 even 4
360.6.a.n.1.1 2 15.8 even 4
600.6.a.k.1.2 2 5.2 odd 4
600.6.f.k.49.1 4 1.1 even 1 trivial
600.6.f.k.49.4 4 5.4 even 2 inner
720.6.a.bf.1.2 2 60.23 odd 4
960.6.a.bi.1.1 2 40.13 odd 4
960.6.a.bn.1.2 2 40.3 even 4