Properties

Label 600.6.f.k.49.3
Level $600$
Weight $6$
Character 600.49
Analytic conductor $96.230$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-324,0,128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1489})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 745x^{2} + 138384 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(19.7938i\) of defining polynomial
Character \(\chi\) \(=\) 600.49
Dual form 600.6.f.k.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{3} -162.350i q^{7} -81.0000 q^{9} -585.401 q^{11} +1045.05i q^{13} -310.249i q^{17} -239.548 q^{19} +1461.15 q^{21} +4804.86i q^{23} -729.000i q^{27} +3969.21 q^{29} +1157.45 q^{31} -5268.61i q^{33} -7168.26i q^{37} -9405.46 q^{39} +17563.1 q^{41} +9789.99i q^{43} -15565.9i q^{47} -9550.60 q^{49} +2792.24 q^{51} -18151.3i q^{53} -2155.93i q^{57} -8148.61 q^{59} -55069.7 q^{61} +13150.4i q^{63} -61162.8i q^{67} -43243.7 q^{69} -67880.9 q^{71} -52131.1i q^{73} +95040.0i q^{77} +11749.9 q^{79} +6561.00 q^{81} -41872.8i q^{83} +35722.9i q^{87} +76344.7 q^{89} +169664. q^{91} +10417.0i q^{93} -33431.7i q^{97} +47417.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 324 q^{9} + 128 q^{11} - 5280 q^{19} + 288 q^{21} - 3880 q^{29} + 12656 q^{31} - 20952 q^{39} + 4808 q^{41} - 28324 q^{49} + 38952 q^{51} - 10368 q^{59} - 107912 q^{61} - 720 q^{69} - 143104 q^{71}+ \cdots - 10368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 162.350i − 1.25230i −0.779703 0.626149i \(-0.784630\pi\)
0.779703 0.626149i \(-0.215370\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) −585.401 −1.45872 −0.729360 0.684130i \(-0.760182\pi\)
−0.729360 + 0.684130i \(0.760182\pi\)
\(12\) 0 0
\(13\) 1045.05i 1.71506i 0.514435 + 0.857529i \(0.328002\pi\)
−0.514435 + 0.857529i \(0.671998\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 310.249i − 0.260368i −0.991490 0.130184i \(-0.958443\pi\)
0.991490 0.130184i \(-0.0415568\pi\)
\(18\) 0 0
\(19\) −239.548 −0.152233 −0.0761165 0.997099i \(-0.524252\pi\)
−0.0761165 + 0.997099i \(0.524252\pi\)
\(20\) 0 0
\(21\) 1461.15 0.723015
\(22\) 0 0
\(23\) 4804.86i 1.89392i 0.321356 + 0.946959i \(0.395861\pi\)
−0.321356 + 0.946959i \(0.604139\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 729.000i − 0.192450i
\(28\) 0 0
\(29\) 3969.21 0.876413 0.438207 0.898874i \(-0.355614\pi\)
0.438207 + 0.898874i \(0.355614\pi\)
\(30\) 0 0
\(31\) 1157.45 0.216320 0.108160 0.994133i \(-0.465504\pi\)
0.108160 + 0.994133i \(0.465504\pi\)
\(32\) 0 0
\(33\) − 5268.61i − 0.842192i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7168.26i − 0.860814i −0.902635 0.430407i \(-0.858370\pi\)
0.902635 0.430407i \(-0.141630\pi\)
\(38\) 0 0
\(39\) −9405.46 −0.990190
\(40\) 0 0
\(41\) 17563.1 1.63171 0.815854 0.578259i \(-0.196268\pi\)
0.815854 + 0.578259i \(0.196268\pi\)
\(42\) 0 0
\(43\) 9789.99i 0.807442i 0.914882 + 0.403721i \(0.132283\pi\)
−0.914882 + 0.403721i \(0.867717\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 15565.9i − 1.02785i −0.857834 0.513926i \(-0.828190\pi\)
0.857834 0.513926i \(-0.171810\pi\)
\(48\) 0 0
\(49\) −9550.60 −0.568252
\(50\) 0 0
\(51\) 2792.24 0.150324
\(52\) 0 0
\(53\) − 18151.3i − 0.887602i −0.896125 0.443801i \(-0.853630\pi\)
0.896125 0.443801i \(-0.146370\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2155.93i − 0.0878918i
\(58\) 0 0
\(59\) −8148.61 −0.304757 −0.152378 0.988322i \(-0.548693\pi\)
−0.152378 + 0.988322i \(0.548693\pi\)
\(60\) 0 0
\(61\) −55069.7 −1.89491 −0.947455 0.319890i \(-0.896354\pi\)
−0.947455 + 0.319890i \(0.896354\pi\)
\(62\) 0 0
\(63\) 13150.4i 0.417433i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 61162.8i − 1.66456i −0.554352 0.832282i \(-0.687034\pi\)
0.554352 0.832282i \(-0.312966\pi\)
\(68\) 0 0
\(69\) −43243.7 −1.09345
\(70\) 0 0
\(71\) −67880.9 −1.59809 −0.799045 0.601271i \(-0.794661\pi\)
−0.799045 + 0.601271i \(0.794661\pi\)
\(72\) 0 0
\(73\) − 52131.1i − 1.14496i −0.819919 0.572479i \(-0.805982\pi\)
0.819919 0.572479i \(-0.194018\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 95040.0i 1.82675i
\(78\) 0 0
\(79\) 11749.9 0.211820 0.105910 0.994376i \(-0.466225\pi\)
0.105910 + 0.994376i \(0.466225\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) − 41872.8i − 0.667170i −0.942720 0.333585i \(-0.891742\pi\)
0.942720 0.333585i \(-0.108258\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 35722.9i 0.505997i
\(88\) 0 0
\(89\) 76344.7 1.02165 0.510827 0.859683i \(-0.329339\pi\)
0.510827 + 0.859683i \(0.329339\pi\)
\(90\) 0 0
\(91\) 169664. 2.14777
\(92\) 0 0
\(93\) 10417.0i 0.124892i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 33431.7i − 0.360769i −0.983596 0.180384i \(-0.942266\pi\)
0.983596 0.180384i \(-0.0577342\pi\)
\(98\) 0 0
\(99\) 47417.5 0.486240
\(100\) 0 0
\(101\) −5866.57 −0.0572243 −0.0286122 0.999591i \(-0.509109\pi\)
−0.0286122 + 0.999591i \(0.509109\pi\)
\(102\) 0 0
\(103\) − 177537.i − 1.64891i −0.565928 0.824455i \(-0.691482\pi\)
0.565928 0.824455i \(-0.308518\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 50695.8i 0.428068i 0.976826 + 0.214034i \(0.0686603\pi\)
−0.976826 + 0.214034i \(0.931340\pi\)
\(108\) 0 0
\(109\) 99979.0 0.806014 0.403007 0.915197i \(-0.367965\pi\)
0.403007 + 0.915197i \(0.367965\pi\)
\(110\) 0 0
\(111\) 64514.3 0.496991
\(112\) 0 0
\(113\) − 98637.1i − 0.726681i −0.931656 0.363341i \(-0.881636\pi\)
0.931656 0.363341i \(-0.118364\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 84649.1i − 0.571686i
\(118\) 0 0
\(119\) −50369.0 −0.326059
\(120\) 0 0
\(121\) 181643. 1.12786
\(122\) 0 0
\(123\) 158068.i 0.942067i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 358979.i − 1.97497i −0.157719 0.987484i \(-0.550414\pi\)
0.157719 0.987484i \(-0.449586\pi\)
\(128\) 0 0
\(129\) −88109.9 −0.466177
\(130\) 0 0
\(131\) −65053.6 −0.331202 −0.165601 0.986193i \(-0.552956\pi\)
−0.165601 + 0.986193i \(0.552956\pi\)
\(132\) 0 0
\(133\) 38890.7i 0.190641i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 42571.0i 0.193782i 0.995295 + 0.0968909i \(0.0308898\pi\)
−0.995295 + 0.0968909i \(0.969110\pi\)
\(138\) 0 0
\(139\) −91861.1 −0.403269 −0.201634 0.979461i \(-0.564625\pi\)
−0.201634 + 0.979461i \(0.564625\pi\)
\(140\) 0 0
\(141\) 140093. 0.593431
\(142\) 0 0
\(143\) − 611774.i − 2.50179i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 85955.4i − 0.328080i
\(148\) 0 0
\(149\) 27586.1 0.101795 0.0508973 0.998704i \(-0.483792\pi\)
0.0508973 + 0.998704i \(0.483792\pi\)
\(150\) 0 0
\(151\) 195938. 0.699319 0.349660 0.936877i \(-0.386297\pi\)
0.349660 + 0.936877i \(0.386297\pi\)
\(152\) 0 0
\(153\) 25130.1i 0.0867894i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 547638.i 1.77314i 0.462590 + 0.886572i \(0.346920\pi\)
−0.462590 + 0.886572i \(0.653080\pi\)
\(158\) 0 0
\(159\) 163362. 0.512457
\(160\) 0 0
\(161\) 780070. 2.37175
\(162\) 0 0
\(163\) 141584.i 0.417392i 0.977981 + 0.208696i \(0.0669219\pi\)
−0.977981 + 0.208696i \(0.933078\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 291788.i − 0.809611i −0.914403 0.404805i \(-0.867339\pi\)
0.914403 0.404805i \(-0.132661\pi\)
\(168\) 0 0
\(169\) −720838. −1.94143
\(170\) 0 0
\(171\) 19403.4 0.0507444
\(172\) 0 0
\(173\) − 22476.3i − 0.0570965i −0.999592 0.0285482i \(-0.990912\pi\)
0.999592 0.0285482i \(-0.00908842\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 73337.5i − 0.175951i
\(178\) 0 0
\(179\) 68168.6 0.159020 0.0795100 0.996834i \(-0.474664\pi\)
0.0795100 + 0.996834i \(0.474664\pi\)
\(180\) 0 0
\(181\) 262075. 0.594605 0.297303 0.954783i \(-0.403913\pi\)
0.297303 + 0.954783i \(0.403913\pi\)
\(182\) 0 0
\(183\) − 495628.i − 1.09403i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 181620.i 0.379804i
\(188\) 0 0
\(189\) −118353. −0.241005
\(190\) 0 0
\(191\) 336486. 0.667396 0.333698 0.942680i \(-0.391703\pi\)
0.333698 + 0.942680i \(0.391703\pi\)
\(192\) 0 0
\(193\) − 963901.i − 1.86268i −0.364145 0.931342i \(-0.618639\pi\)
0.364145 0.931342i \(-0.381361\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 809195.i − 1.48555i −0.669540 0.742776i \(-0.733509\pi\)
0.669540 0.742776i \(-0.266491\pi\)
\(198\) 0 0
\(199\) −490997. −0.878913 −0.439457 0.898264i \(-0.644829\pi\)
−0.439457 + 0.898264i \(0.644829\pi\)
\(200\) 0 0
\(201\) 550465. 0.961036
\(202\) 0 0
\(203\) − 644402.i − 1.09753i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 389193.i − 0.631306i
\(208\) 0 0
\(209\) 140232. 0.222065
\(210\) 0 0
\(211\) −297359. −0.459806 −0.229903 0.973214i \(-0.573841\pi\)
−0.229903 + 0.973214i \(0.573841\pi\)
\(212\) 0 0
\(213\) − 610928.i − 0.922658i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 187912.i − 0.270897i
\(218\) 0 0
\(219\) 469180. 0.661042
\(220\) 0 0
\(221\) 324226. 0.446547
\(222\) 0 0
\(223\) − 95392.2i − 0.128455i −0.997935 0.0642275i \(-0.979542\pi\)
0.997935 0.0642275i \(-0.0204583\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 496175.i 0.639102i 0.947569 + 0.319551i \(0.103532\pi\)
−0.947569 + 0.319551i \(0.896468\pi\)
\(228\) 0 0
\(229\) 605872. 0.763470 0.381735 0.924272i \(-0.375327\pi\)
0.381735 + 0.924272i \(0.375327\pi\)
\(230\) 0 0
\(231\) −855360. −1.05468
\(232\) 0 0
\(233\) 1.11618e6i 1.34693i 0.739220 + 0.673464i \(0.235194\pi\)
−0.739220 + 0.673464i \(0.764806\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 105749.i 0.122294i
\(238\) 0 0
\(239\) 1.13721e6 1.28779 0.643896 0.765113i \(-0.277317\pi\)
0.643896 + 0.765113i \(0.277317\pi\)
\(240\) 0 0
\(241\) 203852. 0.226086 0.113043 0.993590i \(-0.463940\pi\)
0.113043 + 0.993590i \(0.463940\pi\)
\(242\) 0 0
\(243\) 59049.0i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 250340.i − 0.261089i
\(248\) 0 0
\(249\) 376855. 0.385191
\(250\) 0 0
\(251\) −391896. −0.392633 −0.196317 0.980541i \(-0.562898\pi\)
−0.196317 + 0.980541i \(0.562898\pi\)
\(252\) 0 0
\(253\) − 2.81277e6i − 2.76269i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 417652.i − 0.394441i −0.980359 0.197220i \(-0.936809\pi\)
0.980359 0.197220i \(-0.0631914\pi\)
\(258\) 0 0
\(259\) −1.16377e6 −1.07800
\(260\) 0 0
\(261\) −321506. −0.292138
\(262\) 0 0
\(263\) 1.17895e6i 1.05101i 0.850791 + 0.525505i \(0.176124\pi\)
−0.850791 + 0.525505i \(0.823876\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 687102.i 0.589852i
\(268\) 0 0
\(269\) 929355. 0.783070 0.391535 0.920163i \(-0.371944\pi\)
0.391535 + 0.920163i \(0.371944\pi\)
\(270\) 0 0
\(271\) −1.08603e6 −0.898293 −0.449147 0.893458i \(-0.648272\pi\)
−0.449147 + 0.893458i \(0.648272\pi\)
\(272\) 0 0
\(273\) 1.52698e6i 1.24001i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.33219e6i 1.04320i 0.853192 + 0.521598i \(0.174664\pi\)
−0.853192 + 0.521598i \(0.825336\pi\)
\(278\) 0 0
\(279\) −93753.2 −0.0721067
\(280\) 0 0
\(281\) 1.21255e6 0.916079 0.458040 0.888932i \(-0.348552\pi\)
0.458040 + 0.888932i \(0.348552\pi\)
\(282\) 0 0
\(283\) 29554.8i 0.0219362i 0.999940 + 0.0109681i \(0.00349133\pi\)
−0.999940 + 0.0109681i \(0.996509\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2.85138e6i − 2.04338i
\(288\) 0 0
\(289\) 1.32360e6 0.932208
\(290\) 0 0
\(291\) 300885. 0.208290
\(292\) 0 0
\(293\) − 1.41049e6i − 0.959844i −0.877311 0.479922i \(-0.840665\pi\)
0.877311 0.479922i \(-0.159335\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 426757.i 0.280731i
\(298\) 0 0
\(299\) −5.02132e6 −3.24818
\(300\) 0 0
\(301\) 1.58941e6 1.01116
\(302\) 0 0
\(303\) − 52799.1i − 0.0330385i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.25330e6i − 1.36450i −0.731119 0.682250i \(-0.761001\pi\)
0.731119 0.682250i \(-0.238999\pi\)
\(308\) 0 0
\(309\) 1.59784e6 0.951998
\(310\) 0 0
\(311\) 1.00991e6 0.592081 0.296041 0.955175i \(-0.404334\pi\)
0.296041 + 0.955175i \(0.404334\pi\)
\(312\) 0 0
\(313\) − 970607.i − 0.559993i −0.960001 0.279996i \(-0.909667\pi\)
0.960001 0.279996i \(-0.0903333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.23575e6i 1.24961i 0.780780 + 0.624806i \(0.214822\pi\)
−0.780780 + 0.624806i \(0.785178\pi\)
\(318\) 0 0
\(319\) −2.32358e6 −1.27844
\(320\) 0 0
\(321\) −456262. −0.247145
\(322\) 0 0
\(323\) 74319.5i 0.0396366i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 899811.i 0.465352i
\(328\) 0 0
\(329\) −2.52713e6 −1.28718
\(330\) 0 0
\(331\) −2.12265e6 −1.06490 −0.532449 0.846462i \(-0.678728\pi\)
−0.532449 + 0.846462i \(0.678728\pi\)
\(332\) 0 0
\(333\) 580629.i 0.286938i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 603103.i − 0.289279i −0.989484 0.144639i \(-0.953798\pi\)
0.989484 0.144639i \(-0.0462022\pi\)
\(338\) 0 0
\(339\) 887734. 0.419550
\(340\) 0 0
\(341\) −677570. −0.315550
\(342\) 0 0
\(343\) − 1.17808e6i − 0.540678i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.25150e6i − 0.557965i −0.960296 0.278982i \(-0.910003\pi\)
0.960296 0.278982i \(-0.0899971\pi\)
\(348\) 0 0
\(349\) −911762. −0.400699 −0.200349 0.979725i \(-0.564208\pi\)
−0.200349 + 0.979725i \(0.564208\pi\)
\(350\) 0 0
\(351\) 761842. 0.330063
\(352\) 0 0
\(353\) 2.80269e6i 1.19712i 0.801078 + 0.598560i \(0.204260\pi\)
−0.801078 + 0.598560i \(0.795740\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 453321.i − 0.188250i
\(358\) 0 0
\(359\) 3.65390e6 1.49631 0.748153 0.663526i \(-0.230941\pi\)
0.748153 + 0.663526i \(0.230941\pi\)
\(360\) 0 0
\(361\) −2.41872e6 −0.976825
\(362\) 0 0
\(363\) 1.63479e6i 0.651172i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 3.32839e6i − 1.28994i −0.764208 0.644970i \(-0.776870\pi\)
0.764208 0.644970i \(-0.223130\pi\)
\(368\) 0 0
\(369\) −1.42261e6 −0.543902
\(370\) 0 0
\(371\) −2.94687e6 −1.11154
\(372\) 0 0
\(373\) 3.38609e6i 1.26016i 0.776530 + 0.630080i \(0.216978\pi\)
−0.776530 + 0.630080i \(0.783022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.14802e6i 1.50310i
\(378\) 0 0
\(379\) 302178. 0.108060 0.0540300 0.998539i \(-0.482793\pi\)
0.0540300 + 0.998539i \(0.482793\pi\)
\(380\) 0 0
\(381\) 3.23081e6 1.14025
\(382\) 0 0
\(383\) 3.56094e6i 1.24042i 0.784436 + 0.620209i \(0.212952\pi\)
−0.784436 + 0.620209i \(0.787048\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 792989.i − 0.269147i
\(388\) 0 0
\(389\) 4.22731e6 1.41641 0.708207 0.706005i \(-0.249504\pi\)
0.708207 + 0.706005i \(0.249504\pi\)
\(390\) 0 0
\(391\) 1.49070e6 0.493116
\(392\) 0 0
\(393\) − 585482.i − 0.191220i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.79565e6i 1.84555i 0.385340 + 0.922775i \(0.374084\pi\)
−0.385340 + 0.922775i \(0.625916\pi\)
\(398\) 0 0
\(399\) −350016. −0.110067
\(400\) 0 0
\(401\) 4.94036e6 1.53426 0.767128 0.641495i \(-0.221685\pi\)
0.767128 + 0.641495i \(0.221685\pi\)
\(402\) 0 0
\(403\) 1.20959e6i 0.371002i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.19631e6i 1.25569i
\(408\) 0 0
\(409\) 1.58766e6 0.469299 0.234649 0.972080i \(-0.424606\pi\)
0.234649 + 0.972080i \(0.424606\pi\)
\(410\) 0 0
\(411\) −383139. −0.111880
\(412\) 0 0
\(413\) 1.32293e6i 0.381647i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 826750.i − 0.232827i
\(418\) 0 0
\(419\) 5.39675e6 1.50175 0.750875 0.660445i \(-0.229632\pi\)
0.750875 + 0.660445i \(0.229632\pi\)
\(420\) 0 0
\(421\) −3.97269e6 −1.09239 −0.546197 0.837657i \(-0.683925\pi\)
−0.546197 + 0.837657i \(0.683925\pi\)
\(422\) 0 0
\(423\) 1.26084e6i 0.342618i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.94059e6i 2.37299i
\(428\) 0 0
\(429\) 5.50596e6 1.44441
\(430\) 0 0
\(431\) −4.11081e6 −1.06594 −0.532972 0.846133i \(-0.678925\pi\)
−0.532972 + 0.846133i \(0.678925\pi\)
\(432\) 0 0
\(433\) 1.77432e6i 0.454792i 0.973802 + 0.227396i \(0.0730211\pi\)
−0.973802 + 0.227396i \(0.926979\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.15100e6i − 0.288317i
\(438\) 0 0
\(439\) −5.97904e6 −1.48071 −0.740355 0.672216i \(-0.765343\pi\)
−0.740355 + 0.672216i \(0.765343\pi\)
\(440\) 0 0
\(441\) 773599. 0.189417
\(442\) 0 0
\(443\) 4.92048e6i 1.19124i 0.803267 + 0.595619i \(0.203093\pi\)
−0.803267 + 0.595619i \(0.796907\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 248275.i 0.0587711i
\(448\) 0 0
\(449\) 4.14322e6 0.969888 0.484944 0.874545i \(-0.338840\pi\)
0.484944 + 0.874545i \(0.338840\pi\)
\(450\) 0 0
\(451\) −1.02815e7 −2.38020
\(452\) 0 0
\(453\) 1.76344e6i 0.403752i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7.38768e6i − 1.65469i −0.561691 0.827347i \(-0.689849\pi\)
0.561691 0.827347i \(-0.310151\pi\)
\(458\) 0 0
\(459\) −226171. −0.0501079
\(460\) 0 0
\(461\) −4.74779e6 −1.04049 −0.520246 0.854016i \(-0.674160\pi\)
−0.520246 + 0.854016i \(0.674160\pi\)
\(462\) 0 0
\(463\) − 6.92369e6i − 1.50101i −0.660862 0.750507i \(-0.729809\pi\)
0.660862 0.750507i \(-0.270191\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 5.92098e6i − 1.25632i −0.778083 0.628161i \(-0.783808\pi\)
0.778083 0.628161i \(-0.216192\pi\)
\(468\) 0 0
\(469\) −9.92980e6 −2.08453
\(470\) 0 0
\(471\) −4.92874e6 −1.02373
\(472\) 0 0
\(473\) − 5.73107e6i − 1.17783i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.47026e6i 0.295867i
\(478\) 0 0
\(479\) 4.07288e6 0.811079 0.405539 0.914078i \(-0.367084\pi\)
0.405539 + 0.914078i \(0.367084\pi\)
\(480\) 0 0
\(481\) 7.49119e6 1.47635
\(482\) 0 0
\(483\) 7.02063e6i 1.36933i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.62701e6i 0.692989i 0.938052 + 0.346495i \(0.112628\pi\)
−0.938052 + 0.346495i \(0.887372\pi\)
\(488\) 0 0
\(489\) −1.27425e6 −0.240981
\(490\) 0 0
\(491\) −2.81431e6 −0.526826 −0.263413 0.964683i \(-0.584848\pi\)
−0.263413 + 0.964683i \(0.584848\pi\)
\(492\) 0 0
\(493\) − 1.23144e6i − 0.228190i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.10205e7i 2.00129i
\(498\) 0 0
\(499\) −2.07684e6 −0.373380 −0.186690 0.982419i \(-0.559776\pi\)
−0.186690 + 0.982419i \(0.559776\pi\)
\(500\) 0 0
\(501\) 2.62609e6 0.467429
\(502\) 0 0
\(503\) − 1.62288e6i − 0.286000i −0.989723 0.143000i \(-0.954325\pi\)
0.989723 0.143000i \(-0.0456750\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.48754e6i − 1.12088i
\(508\) 0 0
\(509\) 4.29837e6 0.735377 0.367688 0.929949i \(-0.380149\pi\)
0.367688 + 0.929949i \(0.380149\pi\)
\(510\) 0 0
\(511\) −8.46350e6 −1.43383
\(512\) 0 0
\(513\) 174631.i 0.0292973i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.11232e6i 1.49935i
\(518\) 0 0
\(519\) 202287. 0.0329647
\(520\) 0 0
\(521\) −4.85382e6 −0.783410 −0.391705 0.920091i \(-0.628115\pi\)
−0.391705 + 0.920091i \(0.628115\pi\)
\(522\) 0 0
\(523\) − 3.13717e6i − 0.501514i −0.968050 0.250757i \(-0.919320\pi\)
0.968050 0.250757i \(-0.0806795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 359096.i − 0.0563228i
\(528\) 0 0
\(529\) −1.66503e7 −2.58692
\(530\) 0 0
\(531\) 660037. 0.101586
\(532\) 0 0
\(533\) 1.83544e7i 2.79847i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 613518.i 0.0918103i
\(538\) 0 0
\(539\) 5.59093e6 0.828920
\(540\) 0 0
\(541\) 1.13491e7 1.66713 0.833566 0.552421i \(-0.186296\pi\)
0.833566 + 0.552421i \(0.186296\pi\)
\(542\) 0 0
\(543\) 2.35867e6i 0.343296i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.26889e7i − 1.81325i −0.421943 0.906623i \(-0.638652\pi\)
0.421943 0.906623i \(-0.361348\pi\)
\(548\) 0 0
\(549\) 4.46065e6 0.631637
\(550\) 0 0
\(551\) −950817. −0.133419
\(552\) 0 0
\(553\) − 1.90760e6i − 0.265261i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 5.91482e6i − 0.807799i −0.914803 0.403900i \(-0.867654\pi\)
0.914803 0.403900i \(-0.132346\pi\)
\(558\) 0 0
\(559\) −1.02310e7 −1.38481
\(560\) 0 0
\(561\) −1.63458e6 −0.219280
\(562\) 0 0
\(563\) 1.19890e6i 0.159409i 0.996819 + 0.0797043i \(0.0253976\pi\)
−0.996819 + 0.0797043i \(0.974602\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.06518e6i − 0.139144i
\(568\) 0 0
\(569\) −76146.2 −0.00985979 −0.00492989 0.999988i \(-0.501569\pi\)
−0.00492989 + 0.999988i \(0.501569\pi\)
\(570\) 0 0
\(571\) −9.47302e6 −1.21590 −0.607950 0.793975i \(-0.708008\pi\)
−0.607950 + 0.793975i \(0.708008\pi\)
\(572\) 0 0
\(573\) 3.02837e6i 0.385321i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.73955e6i 0.592649i 0.955087 + 0.296325i \(0.0957610\pi\)
−0.955087 + 0.296325i \(0.904239\pi\)
\(578\) 0 0
\(579\) 8.67511e6 1.07542
\(580\) 0 0
\(581\) −6.79805e6 −0.835496
\(582\) 0 0
\(583\) 1.06258e7i 1.29476i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.58535e6i − 0.189902i −0.995482 0.0949511i \(-0.969731\pi\)
0.995482 0.0949511i \(-0.0302695\pi\)
\(588\) 0 0
\(589\) −277264. −0.0329311
\(590\) 0 0
\(591\) 7.28276e6 0.857684
\(592\) 0 0
\(593\) 7.56532e6i 0.883467i 0.897146 + 0.441734i \(0.145636\pi\)
−0.897146 + 0.441734i \(0.854364\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 4.41897e6i − 0.507441i
\(598\) 0 0
\(599\) −1.25418e7 −1.42821 −0.714105 0.700038i \(-0.753166\pi\)
−0.714105 + 0.700038i \(0.753166\pi\)
\(600\) 0 0
\(601\) −6.32087e6 −0.713824 −0.356912 0.934138i \(-0.616170\pi\)
−0.356912 + 0.934138i \(0.616170\pi\)
\(602\) 0 0
\(603\) 4.95419e6i 0.554855i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 950320.i − 0.104688i −0.998629 0.0523441i \(-0.983331\pi\)
0.998629 0.0523441i \(-0.0166693\pi\)
\(608\) 0 0
\(609\) 5.79962e6 0.633660
\(610\) 0 0
\(611\) 1.62672e7 1.76283
\(612\) 0 0
\(613\) − 5.24076e6i − 0.563304i −0.959517 0.281652i \(-0.909118\pi\)
0.959517 0.281652i \(-0.0908824\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4.76539e6i − 0.503948i −0.967734 0.251974i \(-0.918920\pi\)
0.967734 0.251974i \(-0.0810797\pi\)
\(618\) 0 0
\(619\) 1.24730e7 1.30841 0.654206 0.756316i \(-0.273003\pi\)
0.654206 + 0.756316i \(0.273003\pi\)
\(620\) 0 0
\(621\) 3.50274e6 0.364485
\(622\) 0 0
\(623\) − 1.23946e7i − 1.27942i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.26209e6i 0.128209i
\(628\) 0 0
\(629\) −2.22394e6 −0.224129
\(630\) 0 0
\(631\) −61030.3 −0.00610200 −0.00305100 0.999995i \(-0.500971\pi\)
−0.00305100 + 0.999995i \(0.500971\pi\)
\(632\) 0 0
\(633\) − 2.67623e6i − 0.265469i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 9.98087e6i − 0.974585i
\(638\) 0 0
\(639\) 5.49835e6 0.532697
\(640\) 0 0
\(641\) −6.76769e6 −0.650572 −0.325286 0.945616i \(-0.605461\pi\)
−0.325286 + 0.945616i \(0.605461\pi\)
\(642\) 0 0
\(643\) − 1.01829e7i − 0.971276i −0.874160 0.485638i \(-0.838587\pi\)
0.874160 0.485638i \(-0.161413\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 7.67748e6i − 0.721037i −0.932752 0.360519i \(-0.882600\pi\)
0.932752 0.360519i \(-0.117400\pi\)
\(648\) 0 0
\(649\) 4.77020e6 0.444555
\(650\) 0 0
\(651\) 1.69121e6 0.156403
\(652\) 0 0
\(653\) − 2.26141e6i − 0.207537i −0.994601 0.103768i \(-0.966910\pi\)
0.994601 0.103768i \(-0.0330901\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.22262e6i 0.381653i
\(658\) 0 0
\(659\) −7.39789e6 −0.663581 −0.331791 0.943353i \(-0.607653\pi\)
−0.331791 + 0.943353i \(0.607653\pi\)
\(660\) 0 0
\(661\) −5.25362e6 −0.467687 −0.233843 0.972274i \(-0.575130\pi\)
−0.233843 + 0.972274i \(0.575130\pi\)
\(662\) 0 0
\(663\) 2.91803e6i 0.257814i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.90715e7i 1.65985i
\(668\) 0 0
\(669\) 858530. 0.0741635
\(670\) 0 0
\(671\) 3.22379e7 2.76414
\(672\) 0 0
\(673\) − 2.17636e7i − 1.85222i −0.377249 0.926112i \(-0.623130\pi\)
0.377249 0.926112i \(-0.376870\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 5.65690e6i − 0.474358i −0.971466 0.237179i \(-0.923777\pi\)
0.971466 0.237179i \(-0.0762229\pi\)
\(678\) 0 0
\(679\) −5.42764e6 −0.451790
\(680\) 0 0
\(681\) −4.46557e6 −0.368986
\(682\) 0 0
\(683\) − 3.74261e6i − 0.306989i −0.988149 0.153495i \(-0.950947\pi\)
0.988149 0.153495i \(-0.0490528\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.45285e6i 0.440790i
\(688\) 0 0
\(689\) 1.89690e7 1.52229
\(690\) 0 0
\(691\) 8.06260e6 0.642362 0.321181 0.947018i \(-0.395920\pi\)
0.321181 + 0.947018i \(0.395920\pi\)
\(692\) 0 0
\(693\) − 7.69824e6i − 0.608917i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 5.44894e6i − 0.424844i
\(698\) 0 0
\(699\) −1.00456e7 −0.777649
\(700\) 0 0
\(701\) 6.25082e6 0.480443 0.240221 0.970718i \(-0.422780\pi\)
0.240221 + 0.970718i \(0.422780\pi\)
\(702\) 0 0
\(703\) 1.71714e6i 0.131044i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 952439.i 0.0716619i
\(708\) 0 0
\(709\) −1.05968e7 −0.791697 −0.395849 0.918316i \(-0.629550\pi\)
−0.395849 + 0.918316i \(0.629550\pi\)
\(710\) 0 0
\(711\) −951741. −0.0706065
\(712\) 0 0
\(713\) 5.56137e6i 0.409692i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.02349e7i 0.743507i
\(718\) 0 0
\(719\) −6.08563e6 −0.439019 −0.219509 0.975610i \(-0.570446\pi\)
−0.219509 + 0.975610i \(0.570446\pi\)
\(720\) 0 0
\(721\) −2.88232e7 −2.06493
\(722\) 0 0
\(723\) 1.83467e6i 0.130531i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.58779e6i 0.251763i 0.992045 + 0.125881i \(0.0401758\pi\)
−0.992045 + 0.125881i \(0.959824\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 3.03733e6 0.210232
\(732\) 0 0
\(733\) − 1.82918e7i − 1.25747i −0.777620 0.628734i \(-0.783573\pi\)
0.777620 0.628734i \(-0.216427\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.58048e7i 2.42813i
\(738\) 0 0
\(739\) 2.48989e6 0.167714 0.0838568 0.996478i \(-0.473276\pi\)
0.0838568 + 0.996478i \(0.473276\pi\)
\(740\) 0 0
\(741\) 2.25306e6 0.150740
\(742\) 0 0
\(743\) − 2.84643e7i − 1.89159i −0.324759 0.945797i \(-0.605283\pi\)
0.324759 0.945797i \(-0.394717\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.39169e6i 0.222390i
\(748\) 0 0
\(749\) 8.23047e6 0.536068
\(750\) 0 0
\(751\) 1.15017e7 0.744156 0.372078 0.928202i \(-0.378645\pi\)
0.372078 + 0.928202i \(0.378645\pi\)
\(752\) 0 0
\(753\) − 3.52707e6i − 0.226687i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 2.00041e7i − 1.26876i −0.773022 0.634379i \(-0.781256\pi\)
0.773022 0.634379i \(-0.218744\pi\)
\(758\) 0 0
\(759\) 2.53149e7 1.59504
\(760\) 0 0
\(761\) 2.55313e7 1.59813 0.799063 0.601248i \(-0.205330\pi\)
0.799063 + 0.601248i \(0.205330\pi\)
\(762\) 0 0
\(763\) − 1.62316e7i − 1.00937i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 8.51571e6i − 0.522676i
\(768\) 0 0
\(769\) −1.13207e7 −0.690330 −0.345165 0.938542i \(-0.612177\pi\)
−0.345165 + 0.938542i \(0.612177\pi\)
\(770\) 0 0
\(771\) 3.75887e6 0.227730
\(772\) 0 0
\(773\) 2.37503e7i 1.42962i 0.699319 + 0.714810i \(0.253487\pi\)
−0.699319 + 0.714810i \(0.746513\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.04739e7i − 0.622381i
\(778\) 0 0
\(779\) −4.20722e6 −0.248400
\(780\) 0 0
\(781\) 3.97375e7 2.33117
\(782\) 0 0
\(783\) − 2.89355e6i − 0.168666i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.66771e7i 0.959808i 0.877321 + 0.479904i \(0.159329\pi\)
−0.877321 + 0.479904i \(0.840671\pi\)
\(788\) 0 0
\(789\) −1.06106e7 −0.606801
\(790\) 0 0
\(791\) −1.60138e7 −0.910022
\(792\) 0 0
\(793\) − 5.75507e7i − 3.24988i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.03514e7i − 1.69252i −0.532771 0.846259i \(-0.678849\pi\)
0.532771 0.846259i \(-0.321151\pi\)
\(798\) 0 0
\(799\) −4.82931e6 −0.267620
\(800\) 0 0
\(801\) −6.18392e6 −0.340551
\(802\) 0 0
\(803\) 3.05176e7i 1.67017i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.36419e6i 0.452106i
\(808\) 0 0
\(809\) −1.09466e7 −0.588042 −0.294021 0.955799i \(-0.594994\pi\)
−0.294021 + 0.955799i \(0.594994\pi\)
\(810\) 0 0
\(811\) −1.24677e7 −0.665634 −0.332817 0.942991i \(-0.607999\pi\)
−0.332817 + 0.942991i \(0.607999\pi\)
\(812\) 0 0
\(813\) − 9.77426e6i − 0.518630i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.34517e6i − 0.122919i
\(818\) 0 0
\(819\) −1.37428e7 −0.715922
\(820\) 0 0
\(821\) −2.12322e6 −0.109935 −0.0549676 0.998488i \(-0.517506\pi\)
−0.0549676 + 0.998488i \(0.517506\pi\)
\(822\) 0 0
\(823\) − 2.17058e7i − 1.11706i −0.829484 0.558531i \(-0.811365\pi\)
0.829484 0.558531i \(-0.188635\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 7.95925e6i − 0.404677i −0.979316 0.202338i \(-0.935146\pi\)
0.979316 0.202338i \(-0.0648541\pi\)
\(828\) 0 0
\(829\) 2.15416e7 1.08866 0.544329 0.838872i \(-0.316784\pi\)
0.544329 + 0.838872i \(0.316784\pi\)
\(830\) 0 0
\(831\) −1.19897e7 −0.602289
\(832\) 0 0
\(833\) 2.96306e6i 0.147955i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 843779.i − 0.0416308i
\(838\) 0 0
\(839\) 2.79514e7 1.37088 0.685439 0.728130i \(-0.259610\pi\)
0.685439 + 0.728130i \(0.259610\pi\)
\(840\) 0 0
\(841\) −4.75654e6 −0.231900
\(842\) 0 0
\(843\) 1.09129e7i 0.528899i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.94898e7i − 1.41242i
\(848\) 0 0
\(849\) −265993. −0.0126649
\(850\) 0 0
\(851\) 3.44425e7 1.63031
\(852\) 0 0
\(853\) 2.67662e7i 1.25955i 0.776778 + 0.629774i \(0.216853\pi\)
−0.776778 + 0.629774i \(0.783147\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 3.97359e7i − 1.84812i −0.382245 0.924061i \(-0.624849\pi\)
0.382245 0.924061i \(-0.375151\pi\)
\(858\) 0 0
\(859\) −2.81141e7 −1.29999 −0.649997 0.759937i \(-0.725230\pi\)
−0.649997 + 0.759937i \(0.725230\pi\)
\(860\) 0 0
\(861\) 2.56624e7 1.17975
\(862\) 0 0
\(863\) − 6.04052e6i − 0.276088i −0.990426 0.138044i \(-0.955919\pi\)
0.990426 0.138044i \(-0.0440815\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.19124e7i 0.538211i
\(868\) 0 0
\(869\) −6.87840e6 −0.308985
\(870\) 0 0
\(871\) 6.39183e7 2.85483
\(872\) 0 0
\(873\) 2.70797e6i 0.120256i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 3.52617e7i − 1.54812i −0.633114 0.774059i \(-0.718224\pi\)
0.633114 0.774059i \(-0.281776\pi\)
\(878\) 0 0
\(879\) 1.26944e7 0.554166
\(880\) 0 0
\(881\) −1.24085e7 −0.538617 −0.269308 0.963054i \(-0.586795\pi\)
−0.269308 + 0.963054i \(0.586795\pi\)
\(882\) 0 0
\(883\) − 1.24560e7i − 0.537623i −0.963193 0.268812i \(-0.913369\pi\)
0.963193 0.268812i \(-0.0866309\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.54632e7i 1.51345i 0.653732 + 0.756726i \(0.273202\pi\)
−0.653732 + 0.756726i \(0.726798\pi\)
\(888\) 0 0
\(889\) −5.82804e7 −2.47325
\(890\) 0 0
\(891\) −3.84082e6 −0.162080
\(892\) 0 0
\(893\) 3.72879e6i 0.156473i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4.51919e7i − 1.87534i
\(898\) 0 0
\(899\) 4.59415e6 0.189586
\(900\) 0 0
\(901\) −5.63142e6 −0.231103
\(902\) 0 0
\(903\) 1.43047e7i 0.583792i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.62354e7i 1.05894i 0.848330 + 0.529469i \(0.177609\pi\)
−0.848330 + 0.529469i \(0.822391\pi\)
\(908\) 0 0
\(909\) 475192. 0.0190748
\(910\) 0 0
\(911\) 2.34607e7 0.936581 0.468290 0.883575i \(-0.344870\pi\)
0.468290 + 0.883575i \(0.344870\pi\)
\(912\) 0 0
\(913\) 2.45124e7i 0.973213i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.05615e7i 0.414764i
\(918\) 0 0
\(919\) 3.36115e7 1.31280 0.656401 0.754412i \(-0.272078\pi\)
0.656401 + 0.754412i \(0.272078\pi\)
\(920\) 0 0
\(921\) 2.02797e7 0.787795
\(922\) 0 0
\(923\) − 7.09389e7i − 2.74082i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.43805e7i 0.549637i
\(928\) 0 0
\(929\) −4.54932e6 −0.172945 −0.0864724 0.996254i \(-0.527559\pi\)
−0.0864724 + 0.996254i \(0.527559\pi\)
\(930\) 0 0
\(931\) 2.28783e6 0.0865067
\(932\) 0 0
\(933\) 9.08918e6i 0.341838i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.90582e7i 1.82542i 0.408610 + 0.912709i \(0.366014\pi\)
−0.408610 + 0.912709i \(0.633986\pi\)
\(938\) 0 0
\(939\) 8.73546e6 0.323312
\(940\) 0 0
\(941\) −3.63415e7 −1.33792 −0.668958 0.743301i \(-0.733259\pi\)
−0.668958 + 0.743301i \(0.733259\pi\)
\(942\) 0 0
\(943\) 8.43883e7i 3.09032i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.46706e7i 0.531586i 0.964030 + 0.265793i \(0.0856338\pi\)
−0.964030 + 0.265793i \(0.914366\pi\)
\(948\) 0 0
\(949\) 5.44797e7 1.96367
\(950\) 0 0
\(951\) −2.01218e7 −0.721464
\(952\) 0 0
\(953\) − 2.95120e7i − 1.05261i −0.850296 0.526304i \(-0.823577\pi\)
0.850296 0.526304i \(-0.176423\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 2.09122e7i − 0.738108i
\(958\) 0 0
\(959\) 6.91142e6 0.242673
\(960\) 0 0
\(961\) −2.72895e7 −0.953206
\(962\) 0 0
\(963\) − 4.10636e6i − 0.142689i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 3.67297e6i − 0.126314i −0.998004 0.0631569i \(-0.979883\pi\)
0.998004 0.0631569i \(-0.0201169\pi\)
\(968\) 0 0
\(969\) −668876. −0.0228842
\(970\) 0 0
\(971\) 3.02080e7 1.02819 0.514096 0.857733i \(-0.328127\pi\)
0.514096 + 0.857733i \(0.328127\pi\)
\(972\) 0 0
\(973\) 1.49137e7i 0.505013i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 3.41688e7i − 1.14523i −0.819824 0.572615i \(-0.805929\pi\)
0.819824 0.572615i \(-0.194071\pi\)
\(978\) 0 0
\(979\) −4.46923e7 −1.49031
\(980\) 0 0
\(981\) −8.09830e6 −0.268671
\(982\) 0 0
\(983\) − 3.84158e7i − 1.26802i −0.773326 0.634009i \(-0.781408\pi\)
0.773326 0.634009i \(-0.218592\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 2.27442e7i − 0.743153i
\(988\) 0 0
\(989\) −4.70395e7 −1.52923
\(990\) 0 0
\(991\) −3.67819e7 −1.18974 −0.594868 0.803824i \(-0.702796\pi\)
−0.594868 + 0.803824i \(0.702796\pi\)
\(992\) 0 0
\(993\) − 1.91038e7i − 0.614819i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.01540e6i 0.159796i 0.996803 + 0.0798982i \(0.0254595\pi\)
−0.996803 + 0.0798982i \(0.974540\pi\)
\(998\) 0 0
\(999\) −5.22566e6 −0.165664
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.6.f.k.49.3 4
5.2 odd 4 120.6.a.g.1.2 2
5.3 odd 4 600.6.a.k.1.1 2
5.4 even 2 inner 600.6.f.k.49.2 4
15.2 even 4 360.6.a.n.1.2 2
20.7 even 4 240.6.a.o.1.1 2
40.27 even 4 960.6.a.bn.1.1 2
40.37 odd 4 960.6.a.bi.1.2 2
60.47 odd 4 720.6.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.a.g.1.2 2 5.2 odd 4
240.6.a.o.1.1 2 20.7 even 4
360.6.a.n.1.2 2 15.2 even 4
600.6.a.k.1.1 2 5.3 odd 4
600.6.f.k.49.2 4 5.4 even 2 inner
600.6.f.k.49.3 4 1.1 even 1 trivial
720.6.a.bf.1.1 2 60.47 odd 4
960.6.a.bi.1.2 2 40.37 odd 4
960.6.a.bn.1.1 2 40.27 even 4