Properties

Label 8-3675e4-1.1-c1e4-0-6
Degree $8$
Conductor $1.824\times 10^{14}$
Sign $1$
Analytic cond. $741545.$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 10·9-s + 12·13-s − 3·16-s + 12·17-s + 20·27-s + 8·29-s + 48·39-s + 16·47-s − 12·48-s + 48·51-s − 16·71-s + 20·73-s + 16·79-s + 35·81-s + 8·83-s + 32·87-s − 4·97-s + 24·103-s + 32·109-s + 120·117-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 64·141-s + ⋯
L(s)  = 1  + 2.30·3-s + 10/3·9-s + 3.32·13-s − 3/4·16-s + 2.91·17-s + 3.84·27-s + 1.48·29-s + 7.68·39-s + 2.33·47-s − 1.73·48-s + 6.72·51-s − 1.89·71-s + 2.34·73-s + 1.80·79-s + 35/9·81-s + 0.878·83-s + 3.43·87-s − 0.406·97-s + 2.36·103-s + 3.06·109-s + 11.0·117-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.38·141-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(741545.\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(36.12254334\)
\(L(\frac12)\) \(\approx\) \(36.12254334\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3$C_1$ \( ( 1 - T )^{4} \)
5 \( 1 \)
7 \( 1 \)
good2$D_4\times C_2$ \( 1 + 3 T^{4} + p^{4} T^{8} \) 4.2.a_a_a_d
11$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_e_a_jm
13$D_{4}$ \( ( 1 - 6 T + 30 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.13.am_ds_atw_dfq
17$D_{4}$ \( ( 1 - 6 T + 38 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.am_ei_azk_euw
19$D_4\times C_2$ \( 1 + 8 T^{2} - 242 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \) 4.19.a_i_a_aji
23$C_2^2 \wr C_2$ \( 1 + 64 T^{2} + 2062 T^{4} + 64 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_cm_a_dbi
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.29.ai_fk_abca_jog
31$C_2^2 \wr C_2$ \( 1 + 72 T^{2} + 2718 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_cu_a_eao
37$C_2^2 \wr C_2$ \( 1 + 36 T^{2} + 2742 T^{4} + 36 p^{2} T^{6} + p^{4} T^{8} \) 4.37.a_bk_a_ebm
41$C_2^2 \wr C_2$ \( 1 + 24 T^{2} + 3006 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \) 4.41.a_y_a_elq
43$C_2^2 \wr C_2$ \( 1 + 44 T^{2} + 2902 T^{4} + 44 p^{2} T^{6} + p^{4} T^{8} \) 4.43.a_bs_a_ehq
47$D_{4}$ \( ( 1 - 8 T + 30 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.aq_eu_abvk_qty
53$C_2^2 \wr C_2$ \( 1 + 160 T^{2} + 11518 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_ge_a_rba
59$C_2^2 \wr C_2$ \( 1 + 108 T^{2} + 8598 T^{4} + 108 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_ee_a_mss
61$C_2^2 \wr C_2$ \( 1 + 36 T^{2} - 234 T^{4} + 36 p^{2} T^{6} + p^{4} T^{8} \) 4.61.a_bk_a_aja
67$C_2^2 \wr C_2$ \( 1 + 156 T^{2} + 14742 T^{4} + 156 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_ga_a_vva
71$D_{4}$ \( ( 1 + 8 T + 138 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.q_nc_eyq_cenu
73$D_{4}$ \( ( 1 - 10 T + 166 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.au_qq_ahbw_dadi
79$D_{4}$ \( ( 1 - 8 T + 94 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.aq_js_aecm_bumw
83$D_{4}$ \( ( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.ai_me_acts_cfpm
89$C_2^2 \wr C_2$ \( 1 + 104 T^{2} + 16926 T^{4} + 104 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_ea_a_zba
97$D_{4}$ \( ( 1 + 2 T + 70 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.97.e_fo_zs_bkgc
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.03635222696970332372853711043, −6.02944658786660036116118225265, −5.62669559127054153981593078142, −5.53173112175513150322179648760, −5.27019487781283009607866357951, −4.88914286833448265090545321858, −4.67282856612736425552398964030, −4.61314536961020508125399852650, −4.41714035857214583227168475273, −3.96713010882329172185987571512, −3.80454540298679071092539854927, −3.66045409778749543469123830850, −3.57778720919361699044159201686, −3.30126774344454311097563817123, −3.29146938311291220710420616059, −2.99237757793486207088662345017, −2.53121220766337814828883317375, −2.50263008206974355980968714904, −2.26853070607354231097130313648, −1.88981751599083972301318138514, −1.60111497903188291416680904769, −1.35054764093303449612626188804, −0.988862380705954479716006024851, −0.939803166626951861067288946440, −0.66319198782652543156763378256, 0.66319198782652543156763378256, 0.939803166626951861067288946440, 0.988862380705954479716006024851, 1.35054764093303449612626188804, 1.60111497903188291416680904769, 1.88981751599083972301318138514, 2.26853070607354231097130313648, 2.50263008206974355980968714904, 2.53121220766337814828883317375, 2.99237757793486207088662345017, 3.29146938311291220710420616059, 3.30126774344454311097563817123, 3.57778720919361699044159201686, 3.66045409778749543469123830850, 3.80454540298679071092539854927, 3.96713010882329172185987571512, 4.41714035857214583227168475273, 4.61314536961020508125399852650, 4.67282856612736425552398964030, 4.88914286833448265090545321858, 5.27019487781283009607866357951, 5.53173112175513150322179648760, 5.62669559127054153981593078142, 6.02944658786660036116118225265, 6.03635222696970332372853711043

Graph of the $Z$-function along the critical line