Properties

Label 4.2.a_a_a_d
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 + 3 x^{4} + 16 x^{8}$
Frobenius angles:  $\pm0.155589323385$, $\pm0.344410676615$, $\pm0.655589323385$, $\pm0.844410676615$
Angle rank:  $1$ (numerical)
Number field:  8.0.2342560000.5
Galois group:  $D_4\times C_2$
Jacobians:  $5$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $20$ $400$ $3980$ $160000$ $1050500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $5$ $9$ $29$ $33$ $65$ $129$ $349$ $513$ $1025$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 2 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{4}}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.2342560000.5.
Endomorphism algebra over $\overline{\F}_{2}$
The base change of $A$ to $\F_{2^{4}}$ is 1.16.d 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-55}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.a_a_a_ad$8$(not in LMFDB)