Properties

Label 3675.2.a.bv.1.4
Level $3675$
Weight $2$
Character 3675.1
Self dual yes
Analytic conductor $29.345$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,2,Mod(1,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,8,0,0,0,0,4,0,0,8,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3450227428\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 735)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.54336\) of defining polynomial
Character \(\chi\) \(=\) 3675.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49721 q^{2} +1.00000 q^{3} +4.23607 q^{4} +2.49721 q^{6} +5.58394 q^{8} +1.00000 q^{9} -4.47214 q^{11} +4.23607 q^{12} +5.23607 q^{13} +5.47214 q^{16} +0.763932 q^{17} +2.49721 q^{18} +8.08115 q^{19} -11.1679 q^{22} +3.08672 q^{23} +5.58394 q^{24} +13.0756 q^{26} +1.00000 q^{27} +2.00000 q^{29} -1.90770 q^{31} +2.49721 q^{32} -4.47214 q^{33} +1.90770 q^{34} +4.23607 q^{36} -6.17345 q^{37} +20.1803 q^{38} +5.23607 q^{39} +6.90212 q^{41} -9.98885 q^{43} -18.9443 q^{44} +7.70820 q^{46} -4.94427 q^{47} +5.47214 q^{48} +0.763932 q^{51} +22.1803 q^{52} +1.90770 q^{53} +2.49721 q^{54} +8.08115 q^{57} +4.99442 q^{58} -9.98885 q^{59} +3.81540 q^{61} -4.76393 q^{62} -4.70820 q^{64} -11.1679 q^{66} +6.17345 q^{67} +3.23607 q^{68} +3.08672 q^{69} +0.472136 q^{71} +5.58394 q^{72} +2.76393 q^{73} -15.4164 q^{74} +34.2323 q^{76} +13.0756 q^{78} +12.9443 q^{79} +1.00000 q^{81} +17.2361 q^{82} +6.47214 q^{83} -24.9443 q^{86} +2.00000 q^{87} -24.9721 q^{88} -9.26017 q^{89} +13.0756 q^{92} -1.90770 q^{93} -12.3469 q^{94} +2.49721 q^{96} +10.1803 q^{97} -4.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 8 q^{4} + 4 q^{9} + 8 q^{12} + 12 q^{13} + 4 q^{16} + 12 q^{17} + 4 q^{27} + 8 q^{29} + 8 q^{36} + 36 q^{38} + 12 q^{39} - 40 q^{44} + 4 q^{46} + 16 q^{47} + 4 q^{48} + 12 q^{51} + 44 q^{52}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49721 1.76580 0.882898 0.469565i \(-0.155589\pi\)
0.882898 + 0.469565i \(0.155589\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.23607 2.11803
\(5\) 0 0
\(6\) 2.49721 1.01948
\(7\) 0 0
\(8\) 5.58394 1.97422
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.47214 −1.34840 −0.674200 0.738549i \(-0.735511\pi\)
−0.674200 + 0.738549i \(0.735511\pi\)
\(12\) 4.23607 1.22285
\(13\) 5.23607 1.45222 0.726112 0.687576i \(-0.241325\pi\)
0.726112 + 0.687576i \(0.241325\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 5.47214 1.36803
\(17\) 0.763932 0.185281 0.0926404 0.995700i \(-0.470469\pi\)
0.0926404 + 0.995700i \(0.470469\pi\)
\(18\) 2.49721 0.588599
\(19\) 8.08115 1.85394 0.926971 0.375132i \(-0.122403\pi\)
0.926971 + 0.375132i \(0.122403\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −11.1679 −2.38100
\(23\) 3.08672 0.643626 0.321813 0.946803i \(-0.395708\pi\)
0.321813 + 0.946803i \(0.395708\pi\)
\(24\) 5.58394 1.13982
\(25\) 0 0
\(26\) 13.0756 2.56433
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −1.90770 −0.342633 −0.171317 0.985216i \(-0.554802\pi\)
−0.171317 + 0.985216i \(0.554802\pi\)
\(32\) 2.49721 0.441449
\(33\) −4.47214 −0.778499
\(34\) 1.90770 0.327168
\(35\) 0 0
\(36\) 4.23607 0.706011
\(37\) −6.17345 −1.01491 −0.507454 0.861679i \(-0.669413\pi\)
−0.507454 + 0.861679i \(0.669413\pi\)
\(38\) 20.1803 3.27368
\(39\) 5.23607 0.838442
\(40\) 0 0
\(41\) 6.90212 1.07793 0.538965 0.842328i \(-0.318815\pi\)
0.538965 + 0.842328i \(0.318815\pi\)
\(42\) 0 0
\(43\) −9.98885 −1.52329 −0.761643 0.647997i \(-0.775607\pi\)
−0.761643 + 0.647997i \(0.775607\pi\)
\(44\) −18.9443 −2.85596
\(45\) 0 0
\(46\) 7.70820 1.13651
\(47\) −4.94427 −0.721196 −0.360598 0.932721i \(-0.617427\pi\)
−0.360598 + 0.932721i \(0.617427\pi\)
\(48\) 5.47214 0.789835
\(49\) 0 0
\(50\) 0 0
\(51\) 0.763932 0.106972
\(52\) 22.1803 3.07586
\(53\) 1.90770 0.262043 0.131021 0.991380i \(-0.458174\pi\)
0.131021 + 0.991380i \(0.458174\pi\)
\(54\) 2.49721 0.339828
\(55\) 0 0
\(56\) 0 0
\(57\) 8.08115 1.07037
\(58\) 4.99442 0.655800
\(59\) −9.98885 −1.30044 −0.650219 0.759747i \(-0.725323\pi\)
−0.650219 + 0.759747i \(0.725323\pi\)
\(60\) 0 0
\(61\) 3.81540 0.488512 0.244256 0.969711i \(-0.421456\pi\)
0.244256 + 0.969711i \(0.421456\pi\)
\(62\) −4.76393 −0.605020
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) 0 0
\(66\) −11.1679 −1.37467
\(67\) 6.17345 0.754207 0.377103 0.926171i \(-0.376920\pi\)
0.377103 + 0.926171i \(0.376920\pi\)
\(68\) 3.23607 0.392431
\(69\) 3.08672 0.371598
\(70\) 0 0
\(71\) 0.472136 0.0560322 0.0280161 0.999607i \(-0.491081\pi\)
0.0280161 + 0.999607i \(0.491081\pi\)
\(72\) 5.58394 0.658073
\(73\) 2.76393 0.323494 0.161747 0.986832i \(-0.448287\pi\)
0.161747 + 0.986832i \(0.448287\pi\)
\(74\) −15.4164 −1.79212
\(75\) 0 0
\(76\) 34.2323 3.92671
\(77\) 0 0
\(78\) 13.0756 1.48052
\(79\) 12.9443 1.45634 0.728172 0.685394i \(-0.240370\pi\)
0.728172 + 0.685394i \(0.240370\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 17.2361 1.90341
\(83\) 6.47214 0.710409 0.355205 0.934789i \(-0.384411\pi\)
0.355205 + 0.934789i \(0.384411\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −24.9443 −2.68981
\(87\) 2.00000 0.214423
\(88\) −24.9721 −2.66204
\(89\) −9.26017 −0.981576 −0.490788 0.871279i \(-0.663291\pi\)
−0.490788 + 0.871279i \(0.663291\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.0756 1.36322
\(93\) −1.90770 −0.197819
\(94\) −12.3469 −1.27349
\(95\) 0 0
\(96\) 2.49721 0.254871
\(97\) 10.1803 1.03366 0.516828 0.856089i \(-0.327113\pi\)
0.516828 + 0.856089i \(0.327113\pi\)
\(98\) 0 0
\(99\) −4.47214 −0.449467
\(100\) 0 0
\(101\) −13.0756 −1.30107 −0.650534 0.759477i \(-0.725455\pi\)
−0.650534 + 0.759477i \(0.725455\pi\)
\(102\) 1.90770 0.188890
\(103\) 1.52786 0.150545 0.0752725 0.997163i \(-0.476017\pi\)
0.0752725 + 0.997163i \(0.476017\pi\)
\(104\) 29.2379 2.86701
\(105\) 0 0
\(106\) 4.76393 0.462714
\(107\) −6.90212 −0.667254 −0.333627 0.942705i \(-0.608273\pi\)
−0.333627 + 0.942705i \(0.608273\pi\)
\(108\) 4.23607 0.407616
\(109\) 12.4721 1.19461 0.597307 0.802013i \(-0.296237\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(110\) 0 0
\(111\) −6.17345 −0.585958
\(112\) 0 0
\(113\) −4.26575 −0.401288 −0.200644 0.979664i \(-0.564303\pi\)
−0.200644 + 0.979664i \(0.564303\pi\)
\(114\) 20.1803 1.89006
\(115\) 0 0
\(116\) 8.47214 0.786618
\(117\) 5.23607 0.484075
\(118\) −24.9443 −2.29631
\(119\) 0 0
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 9.52786 0.862612
\(123\) 6.90212 0.622344
\(124\) −8.08115 −0.725709
\(125\) 0 0
\(126\) 0 0
\(127\) −3.81540 −0.338562 −0.169281 0.985568i \(-0.554145\pi\)
−0.169281 + 0.985568i \(0.554145\pi\)
\(128\) −16.7518 −1.48066
\(129\) −9.98885 −0.879469
\(130\) 0 0
\(131\) 9.98885 0.872730 0.436365 0.899770i \(-0.356266\pi\)
0.436365 + 0.899770i \(0.356266\pi\)
\(132\) −18.9443 −1.64889
\(133\) 0 0
\(134\) 15.4164 1.33177
\(135\) 0 0
\(136\) 4.26575 0.365785
\(137\) −8.08115 −0.690419 −0.345210 0.938526i \(-0.612192\pi\)
−0.345210 + 0.938526i \(0.612192\pi\)
\(138\) 7.70820 0.656166
\(139\) −14.2546 −1.20906 −0.604530 0.796583i \(-0.706639\pi\)
−0.604530 + 0.796583i \(0.706639\pi\)
\(140\) 0 0
\(141\) −4.94427 −0.416383
\(142\) 1.17902 0.0989415
\(143\) −23.4164 −1.95818
\(144\) 5.47214 0.456011
\(145\) 0 0
\(146\) 6.90212 0.571224
\(147\) 0 0
\(148\) −26.1511 −2.14961
\(149\) −18.9443 −1.55198 −0.775988 0.630748i \(-0.782748\pi\)
−0.775988 + 0.630748i \(0.782748\pi\)
\(150\) 0 0
\(151\) −8.94427 −0.727875 −0.363937 0.931423i \(-0.618568\pi\)
−0.363937 + 0.931423i \(0.618568\pi\)
\(152\) 45.1246 3.66009
\(153\) 0.763932 0.0617602
\(154\) 0 0
\(155\) 0 0
\(156\) 22.1803 1.77585
\(157\) −8.65248 −0.690543 −0.345271 0.938503i \(-0.612213\pi\)
−0.345271 + 0.938503i \(0.612213\pi\)
\(158\) 32.3246 2.57161
\(159\) 1.90770 0.151290
\(160\) 0 0
\(161\) 0 0
\(162\) 2.49721 0.196200
\(163\) 3.81540 0.298845 0.149423 0.988773i \(-0.452259\pi\)
0.149423 + 0.988773i \(0.452259\pi\)
\(164\) 29.2379 2.28309
\(165\) 0 0
\(166\) 16.1623 1.25444
\(167\) −15.4164 −1.19296 −0.596479 0.802629i \(-0.703434\pi\)
−0.596479 + 0.802629i \(0.703434\pi\)
\(168\) 0 0
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) 8.08115 0.617981
\(172\) −42.3134 −3.22637
\(173\) 19.2361 1.46249 0.731246 0.682114i \(-0.238939\pi\)
0.731246 + 0.682114i \(0.238939\pi\)
\(174\) 4.99442 0.378626
\(175\) 0 0
\(176\) −24.4721 −1.84466
\(177\) −9.98885 −0.750808
\(178\) −23.1246 −1.73326
\(179\) −7.52786 −0.562659 −0.281329 0.959611i \(-0.590775\pi\)
−0.281329 + 0.959611i \(0.590775\pi\)
\(180\) 0 0
\(181\) −9.98885 −0.742465 −0.371233 0.928540i \(-0.621065\pi\)
−0.371233 + 0.928540i \(0.621065\pi\)
\(182\) 0 0
\(183\) 3.81540 0.282043
\(184\) 17.2361 1.27066
\(185\) 0 0
\(186\) −4.76393 −0.349308
\(187\) −3.41641 −0.249832
\(188\) −20.9443 −1.52752
\(189\) 0 0
\(190\) 0 0
\(191\) −3.52786 −0.255267 −0.127634 0.991821i \(-0.540738\pi\)
−0.127634 + 0.991821i \(0.540738\pi\)
\(192\) −4.70820 −0.339785
\(193\) −13.8042 −0.993652 −0.496826 0.867850i \(-0.665501\pi\)
−0.496826 + 0.867850i \(0.665501\pi\)
\(194\) 25.4225 1.82523
\(195\) 0 0
\(196\) 0 0
\(197\) −1.90770 −0.135918 −0.0679590 0.997688i \(-0.521649\pi\)
−0.0679590 + 0.997688i \(0.521649\pi\)
\(198\) −11.1679 −0.793666
\(199\) −11.8965 −0.843324 −0.421662 0.906753i \(-0.638553\pi\)
−0.421662 + 0.906753i \(0.638553\pi\)
\(200\) 0 0
\(201\) 6.17345 0.435441
\(202\) −32.6525 −2.29742
\(203\) 0 0
\(204\) 3.23607 0.226570
\(205\) 0 0
\(206\) 3.81540 0.265832
\(207\) 3.08672 0.214542
\(208\) 28.6525 1.98669
\(209\) −36.1400 −2.49986
\(210\) 0 0
\(211\) −12.9443 −0.891120 −0.445560 0.895252i \(-0.646995\pi\)
−0.445560 + 0.895252i \(0.646995\pi\)
\(212\) 8.08115 0.555016
\(213\) 0.472136 0.0323502
\(214\) −17.2361 −1.17823
\(215\) 0 0
\(216\) 5.58394 0.379939
\(217\) 0 0
\(218\) 31.1456 2.10944
\(219\) 2.76393 0.186769
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) −15.4164 −1.03468
\(223\) −17.8885 −1.19791 −0.598953 0.800784i \(-0.704416\pi\)
−0.598953 + 0.800784i \(0.704416\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −10.6525 −0.708592
\(227\) −1.52786 −0.101408 −0.0507039 0.998714i \(-0.516146\pi\)
−0.0507039 + 0.998714i \(0.516146\pi\)
\(228\) 34.2323 2.26709
\(229\) 22.3357 1.47599 0.737994 0.674808i \(-0.235773\pi\)
0.737994 + 0.674808i \(0.235773\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 11.1679 0.733207
\(233\) −11.8965 −0.779369 −0.389684 0.920948i \(-0.627416\pi\)
−0.389684 + 0.920948i \(0.627416\pi\)
\(234\) 13.0756 0.854777
\(235\) 0 0
\(236\) −42.3134 −2.75437
\(237\) 12.9443 0.840821
\(238\) 0 0
\(239\) −7.52786 −0.486937 −0.243469 0.969909i \(-0.578285\pi\)
−0.243469 + 0.969909i \(0.578285\pi\)
\(240\) 0 0
\(241\) −6.17345 −0.397667 −0.198833 0.980033i \(-0.563715\pi\)
−0.198833 + 0.980033i \(0.563715\pi\)
\(242\) 22.4749 1.44474
\(243\) 1.00000 0.0641500
\(244\) 16.1623 1.03468
\(245\) 0 0
\(246\) 17.2361 1.09893
\(247\) 42.3134 2.69234
\(248\) −10.6525 −0.676433
\(249\) 6.47214 0.410155
\(250\) 0 0
\(251\) 2.35805 0.148839 0.0744193 0.997227i \(-0.476290\pi\)
0.0744193 + 0.997227i \(0.476290\pi\)
\(252\) 0 0
\(253\) −13.8042 −0.867866
\(254\) −9.52786 −0.597831
\(255\) 0 0
\(256\) −32.4164 −2.02603
\(257\) 21.7082 1.35412 0.677060 0.735928i \(-0.263254\pi\)
0.677060 + 0.735928i \(0.263254\pi\)
\(258\) −24.9443 −1.55296
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 24.9443 1.54106
\(263\) −15.4336 −0.951678 −0.475839 0.879532i \(-0.657855\pi\)
−0.475839 + 0.879532i \(0.657855\pi\)
\(264\) −24.9721 −1.53693
\(265\) 0 0
\(266\) 0 0
\(267\) −9.26017 −0.566713
\(268\) 26.1511 1.59744
\(269\) −6.90212 −0.420830 −0.210415 0.977612i \(-0.567482\pi\)
−0.210415 + 0.977612i \(0.567482\pi\)
\(270\) 0 0
\(271\) −18.0700 −1.09767 −0.548837 0.835929i \(-0.684929\pi\)
−0.548837 + 0.835929i \(0.684929\pi\)
\(272\) 4.18034 0.253470
\(273\) 0 0
\(274\) −20.1803 −1.21914
\(275\) 0 0
\(276\) 13.0756 0.787057
\(277\) 9.98885 0.600172 0.300086 0.953912i \(-0.402985\pi\)
0.300086 + 0.953912i \(0.402985\pi\)
\(278\) −35.5967 −2.13495
\(279\) −1.90770 −0.114211
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) −12.3469 −0.735247
\(283\) 12.3607 0.734766 0.367383 0.930070i \(-0.380254\pi\)
0.367383 + 0.930070i \(0.380254\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −58.4757 −3.45774
\(287\) 0 0
\(288\) 2.49721 0.147150
\(289\) −16.4164 −0.965671
\(290\) 0 0
\(291\) 10.1803 0.596782
\(292\) 11.7082 0.685171
\(293\) 20.1803 1.17895 0.589474 0.807787i \(-0.299335\pi\)
0.589474 + 0.807787i \(0.299335\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −34.4721 −2.00365
\(297\) −4.47214 −0.259500
\(298\) −47.3079 −2.74047
\(299\) 16.1623 0.934690
\(300\) 0 0
\(301\) 0 0
\(302\) −22.3357 −1.28528
\(303\) −13.0756 −0.751172
\(304\) 44.2211 2.53626
\(305\) 0 0
\(306\) 1.90770 0.109056
\(307\) 2.47214 0.141092 0.0705461 0.997509i \(-0.477526\pi\)
0.0705461 + 0.997509i \(0.477526\pi\)
\(308\) 0 0
\(309\) 1.52786 0.0869171
\(310\) 0 0
\(311\) −3.81540 −0.216352 −0.108176 0.994132i \(-0.534501\pi\)
−0.108176 + 0.994132i \(0.534501\pi\)
\(312\) 29.2379 1.65527
\(313\) 24.6525 1.39344 0.696720 0.717343i \(-0.254642\pi\)
0.696720 + 0.717343i \(0.254642\pi\)
\(314\) −21.6071 −1.21936
\(315\) 0 0
\(316\) 54.8328 3.08459
\(317\) −10.4392 −0.586324 −0.293162 0.956063i \(-0.594707\pi\)
−0.293162 + 0.956063i \(0.594707\pi\)
\(318\) 4.76393 0.267148
\(319\) −8.94427 −0.500783
\(320\) 0 0
\(321\) −6.90212 −0.385239
\(322\) 0 0
\(323\) 6.17345 0.343500
\(324\) 4.23607 0.235337
\(325\) 0 0
\(326\) 9.52786 0.527700
\(327\) 12.4721 0.689711
\(328\) 38.5410 2.12807
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 27.4164 1.50467
\(333\) −6.17345 −0.338303
\(334\) −38.4980 −2.10652
\(335\) 0 0
\(336\) 0 0
\(337\) −3.81540 −0.207838 −0.103919 0.994586i \(-0.533138\pi\)
−0.103919 + 0.994586i \(0.533138\pi\)
\(338\) 36.0008 1.95819
\(339\) −4.26575 −0.231684
\(340\) 0 0
\(341\) 8.53149 0.462006
\(342\) 20.1803 1.09123
\(343\) 0 0
\(344\) −55.7771 −3.00730
\(345\) 0 0
\(346\) 48.0365 2.58246
\(347\) 25.4225 1.36475 0.682375 0.731003i \(-0.260947\pi\)
0.682375 + 0.731003i \(0.260947\pi\)
\(348\) 8.47214 0.454154
\(349\) 8.53149 0.456680 0.228340 0.973581i \(-0.426670\pi\)
0.228340 + 0.973581i \(0.426670\pi\)
\(350\) 0 0
\(351\) 5.23607 0.279481
\(352\) −11.1679 −0.595250
\(353\) −3.23607 −0.172239 −0.0861193 0.996285i \(-0.527447\pi\)
−0.0861193 + 0.996285i \(0.527447\pi\)
\(354\) −24.9443 −1.32577
\(355\) 0 0
\(356\) −39.2267 −2.07901
\(357\) 0 0
\(358\) −18.7987 −0.993541
\(359\) 20.4721 1.08048 0.540239 0.841512i \(-0.318334\pi\)
0.540239 + 0.841512i \(0.318334\pi\)
\(360\) 0 0
\(361\) 46.3050 2.43710
\(362\) −24.9443 −1.31104
\(363\) 9.00000 0.472377
\(364\) 0 0
\(365\) 0 0
\(366\) 9.52786 0.498029
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 16.8910 0.880503
\(369\) 6.90212 0.359310
\(370\) 0 0
\(371\) 0 0
\(372\) −8.08115 −0.418988
\(373\) 32.3246 1.67370 0.836852 0.547429i \(-0.184393\pi\)
0.836852 + 0.547429i \(0.184393\pi\)
\(374\) −8.53149 −0.441153
\(375\) 0 0
\(376\) −27.6085 −1.42380
\(377\) 10.4721 0.539342
\(378\) 0 0
\(379\) 3.05573 0.156962 0.0784811 0.996916i \(-0.474993\pi\)
0.0784811 + 0.996916i \(0.474993\pi\)
\(380\) 0 0
\(381\) −3.81540 −0.195469
\(382\) −8.80982 −0.450750
\(383\) 10.4721 0.535101 0.267551 0.963544i \(-0.413786\pi\)
0.267551 + 0.963544i \(0.413786\pi\)
\(384\) −16.7518 −0.854862
\(385\) 0 0
\(386\) −34.4721 −1.75459
\(387\) −9.98885 −0.507762
\(388\) 43.1246 2.18932
\(389\) −11.8885 −0.602773 −0.301387 0.953502i \(-0.597449\pi\)
−0.301387 + 0.953502i \(0.597449\pi\)
\(390\) 0 0
\(391\) 2.35805 0.119252
\(392\) 0 0
\(393\) 9.98885 0.503871
\(394\) −4.76393 −0.240003
\(395\) 0 0
\(396\) −18.9443 −0.951985
\(397\) −9.23607 −0.463545 −0.231772 0.972770i \(-0.574452\pi\)
−0.231772 + 0.972770i \(0.574452\pi\)
\(398\) −29.7082 −1.48914
\(399\) 0 0
\(400\) 0 0
\(401\) 36.8328 1.83934 0.919672 0.392689i \(-0.128455\pi\)
0.919672 + 0.392689i \(0.128455\pi\)
\(402\) 15.4164 0.768901
\(403\) −9.98885 −0.497580
\(404\) −55.3890 −2.75571
\(405\) 0 0
\(406\) 0 0
\(407\) 27.6085 1.36850
\(408\) 4.26575 0.211186
\(409\) −33.7819 −1.67041 −0.835205 0.549939i \(-0.814651\pi\)
−0.835205 + 0.549939i \(0.814651\pi\)
\(410\) 0 0
\(411\) −8.08115 −0.398614
\(412\) 6.47214 0.318859
\(413\) 0 0
\(414\) 7.70820 0.378838
\(415\) 0 0
\(416\) 13.0756 0.641083
\(417\) −14.2546 −0.698051
\(418\) −90.2492 −4.41423
\(419\) −1.45735 −0.0711964 −0.0355982 0.999366i \(-0.511334\pi\)
−0.0355982 + 0.999366i \(0.511334\pi\)
\(420\) 0 0
\(421\) 16.4721 0.802803 0.401401 0.915902i \(-0.368523\pi\)
0.401401 + 0.915902i \(0.368523\pi\)
\(422\) −32.3246 −1.57354
\(423\) −4.94427 −0.240399
\(424\) 10.6525 0.517330
\(425\) 0 0
\(426\) 1.17902 0.0571239
\(427\) 0 0
\(428\) −29.2379 −1.41327
\(429\) −23.4164 −1.13055
\(430\) 0 0
\(431\) −4.47214 −0.215415 −0.107708 0.994183i \(-0.534351\pi\)
−0.107708 + 0.994183i \(0.534351\pi\)
\(432\) 5.47214 0.263278
\(433\) 35.7082 1.71603 0.858013 0.513627i \(-0.171699\pi\)
0.858013 + 0.513627i \(0.171699\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 52.8328 2.53023
\(437\) 24.9443 1.19325
\(438\) 6.90212 0.329796
\(439\) −24.2434 −1.15708 −0.578538 0.815655i \(-0.696377\pi\)
−0.578538 + 0.815655i \(0.696377\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9.98885 0.475121
\(443\) −31.5959 −1.50117 −0.750584 0.660775i \(-0.770228\pi\)
−0.750584 + 0.660775i \(0.770228\pi\)
\(444\) −26.1511 −1.24108
\(445\) 0 0
\(446\) −44.6715 −2.11526
\(447\) −18.9443 −0.896033
\(448\) 0 0
\(449\) −17.0557 −0.804910 −0.402455 0.915440i \(-0.631843\pi\)
−0.402455 + 0.915440i \(0.631843\pi\)
\(450\) 0 0
\(451\) −30.8672 −1.45348
\(452\) −18.0700 −0.849941
\(453\) −8.94427 −0.420239
\(454\) −3.81540 −0.179066
\(455\) 0 0
\(456\) 45.1246 2.11315
\(457\) 23.7931 1.11299 0.556497 0.830850i \(-0.312145\pi\)
0.556497 + 0.830850i \(0.312145\pi\)
\(458\) 55.7771 2.60629
\(459\) 0.763932 0.0356573
\(460\) 0 0
\(461\) −36.8687 −1.71715 −0.858573 0.512692i \(-0.828648\pi\)
−0.858573 + 0.512692i \(0.828648\pi\)
\(462\) 0 0
\(463\) 28.5092 1.32493 0.662467 0.749091i \(-0.269509\pi\)
0.662467 + 0.749091i \(0.269509\pi\)
\(464\) 10.9443 0.508075
\(465\) 0 0
\(466\) −29.7082 −1.37621
\(467\) −27.4164 −1.26868 −0.634340 0.773054i \(-0.718728\pi\)
−0.634340 + 0.773054i \(0.718728\pi\)
\(468\) 22.1803 1.02529
\(469\) 0 0
\(470\) 0 0
\(471\) −8.65248 −0.398685
\(472\) −55.7771 −2.56735
\(473\) 44.6715 2.05400
\(474\) 32.3246 1.48472
\(475\) 0 0
\(476\) 0 0
\(477\) 1.90770 0.0873476
\(478\) −18.7987 −0.859831
\(479\) −28.5092 −1.30262 −0.651309 0.758813i \(-0.725780\pi\)
−0.651309 + 0.758813i \(0.725780\pi\)
\(480\) 0 0
\(481\) −32.3246 −1.47387
\(482\) −15.4164 −0.702198
\(483\) 0 0
\(484\) 38.1246 1.73294
\(485\) 0 0
\(486\) 2.49721 0.113276
\(487\) 9.98885 0.452638 0.226319 0.974053i \(-0.427331\pi\)
0.226319 + 0.974053i \(0.427331\pi\)
\(488\) 21.3050 0.964430
\(489\) 3.81540 0.172538
\(490\) 0 0
\(491\) 18.3607 0.828606 0.414303 0.910139i \(-0.364025\pi\)
0.414303 + 0.910139i \(0.364025\pi\)
\(492\) 29.2379 1.31814
\(493\) 1.52786 0.0688115
\(494\) 105.666 4.75412
\(495\) 0 0
\(496\) −10.4392 −0.468734
\(497\) 0 0
\(498\) 16.1623 0.724250
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) 0 0
\(501\) −15.4164 −0.688754
\(502\) 5.88854 0.262819
\(503\) 29.5279 1.31658 0.658291 0.752763i \(-0.271280\pi\)
0.658291 + 0.752763i \(0.271280\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −34.4721 −1.53247
\(507\) 14.4164 0.640255
\(508\) −16.1623 −0.717086
\(509\) −13.0756 −0.579565 −0.289782 0.957093i \(-0.593583\pi\)
−0.289782 + 0.957093i \(0.593583\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −47.4470 −2.09688
\(513\) 8.08115 0.356791
\(514\) 54.2100 2.39110
\(515\) 0 0
\(516\) −42.3134 −1.86275
\(517\) 22.1115 0.972461
\(518\) 0 0
\(519\) 19.2361 0.844370
\(520\) 0 0
\(521\) 39.2267 1.71855 0.859277 0.511511i \(-0.170914\pi\)
0.859277 + 0.511511i \(0.170914\pi\)
\(522\) 4.99442 0.218600
\(523\) 15.0557 0.658341 0.329171 0.944270i \(-0.393231\pi\)
0.329171 + 0.944270i \(0.393231\pi\)
\(524\) 42.3134 1.84847
\(525\) 0 0
\(526\) −38.5410 −1.68047
\(527\) −1.45735 −0.0634833
\(528\) −24.4721 −1.06501
\(529\) −13.4721 −0.585745
\(530\) 0 0
\(531\) −9.98885 −0.433479
\(532\) 0 0
\(533\) 36.1400 1.56540
\(534\) −23.1246 −1.00070
\(535\) 0 0
\(536\) 34.4721 1.48897
\(537\) −7.52786 −0.324851
\(538\) −17.2361 −0.743100
\(539\) 0 0
\(540\) 0 0
\(541\) −24.4721 −1.05214 −0.526070 0.850441i \(-0.676335\pi\)
−0.526070 + 0.850441i \(0.676335\pi\)
\(542\) −45.1246 −1.93827
\(543\) −9.98885 −0.428663
\(544\) 1.90770 0.0817920
\(545\) 0 0
\(546\) 0 0
\(547\) −38.4980 −1.64606 −0.823029 0.568000i \(-0.807717\pi\)
−0.823029 + 0.568000i \(0.807717\pi\)
\(548\) −34.2323 −1.46233
\(549\) 3.81540 0.162837
\(550\) 0 0
\(551\) 16.1623 0.688537
\(552\) 17.2361 0.733616
\(553\) 0 0
\(554\) 24.9443 1.05978
\(555\) 0 0
\(556\) −60.3834 −2.56083
\(557\) −30.4169 −1.28881 −0.644403 0.764686i \(-0.722894\pi\)
−0.644403 + 0.764686i \(0.722894\pi\)
\(558\) −4.76393 −0.201673
\(559\) −52.3023 −2.21215
\(560\) 0 0
\(561\) −3.41641 −0.144241
\(562\) −54.9387 −2.31745
\(563\) 13.8885 0.585332 0.292666 0.956215i \(-0.405458\pi\)
0.292666 + 0.956215i \(0.405458\pi\)
\(564\) −20.9443 −0.881913
\(565\) 0 0
\(566\) 30.8672 1.29745
\(567\) 0 0
\(568\) 2.63638 0.110620
\(569\) 36.8328 1.54411 0.772056 0.635555i \(-0.219228\pi\)
0.772056 + 0.635555i \(0.219228\pi\)
\(570\) 0 0
\(571\) −42.8328 −1.79250 −0.896249 0.443552i \(-0.853718\pi\)
−0.896249 + 0.443552i \(0.853718\pi\)
\(572\) −99.1935 −4.14749
\(573\) −3.52786 −0.147379
\(574\) 0 0
\(575\) 0 0
\(576\) −4.70820 −0.196175
\(577\) 16.6525 0.693252 0.346626 0.938003i \(-0.387327\pi\)
0.346626 + 0.938003i \(0.387327\pi\)
\(578\) −40.9953 −1.70518
\(579\) −13.8042 −0.573685
\(580\) 0 0
\(581\) 0 0
\(582\) 25.4225 1.05380
\(583\) −8.53149 −0.353338
\(584\) 15.4336 0.638648
\(585\) 0 0
\(586\) 50.3946 2.08178
\(587\) 8.94427 0.369170 0.184585 0.982817i \(-0.440906\pi\)
0.184585 + 0.982817i \(0.440906\pi\)
\(588\) 0 0
\(589\) −15.4164 −0.635222
\(590\) 0 0
\(591\) −1.90770 −0.0784723
\(592\) −33.7819 −1.38843
\(593\) −17.7082 −0.727189 −0.363594 0.931557i \(-0.618451\pi\)
−0.363594 + 0.931557i \(0.618451\pi\)
\(594\) −11.1679 −0.458223
\(595\) 0 0
\(596\) −80.2492 −3.28714
\(597\) −11.8965 −0.486893
\(598\) 40.3607 1.65047
\(599\) 9.41641 0.384744 0.192372 0.981322i \(-0.438382\pi\)
0.192372 + 0.981322i \(0.438382\pi\)
\(600\) 0 0
\(601\) −12.3469 −0.503640 −0.251820 0.967774i \(-0.581029\pi\)
−0.251820 + 0.967774i \(0.581029\pi\)
\(602\) 0 0
\(603\) 6.17345 0.251402
\(604\) −37.8885 −1.54166
\(605\) 0 0
\(606\) −32.6525 −1.32642
\(607\) 38.8328 1.57618 0.788088 0.615563i \(-0.211071\pi\)
0.788088 + 0.615563i \(0.211071\pi\)
\(608\) 20.1803 0.818421
\(609\) 0 0
\(610\) 0 0
\(611\) −25.8885 −1.04734
\(612\) 3.23607 0.130810
\(613\) 44.6715 1.80426 0.902132 0.431460i \(-0.142001\pi\)
0.902132 + 0.431460i \(0.142001\pi\)
\(614\) 6.17345 0.249140
\(615\) 0 0
\(616\) 0 0
\(617\) 20.4280 0.822402 0.411201 0.911545i \(-0.365109\pi\)
0.411201 + 0.911545i \(0.365109\pi\)
\(618\) 3.81540 0.153478
\(619\) 22.7861 0.915850 0.457925 0.888991i \(-0.348593\pi\)
0.457925 + 0.888991i \(0.348593\pi\)
\(620\) 0 0
\(621\) 3.08672 0.123866
\(622\) −9.52786 −0.382033
\(623\) 0 0
\(624\) 28.6525 1.14702
\(625\) 0 0
\(626\) 61.5625 2.46053
\(627\) −36.1400 −1.44329
\(628\) −36.6525 −1.46259
\(629\) −4.71609 −0.188043
\(630\) 0 0
\(631\) 27.0557 1.07707 0.538536 0.842603i \(-0.318978\pi\)
0.538536 + 0.842603i \(0.318978\pi\)
\(632\) 72.2800 2.87514
\(633\) −12.9443 −0.514489
\(634\) −26.0689 −1.03533
\(635\) 0 0
\(636\) 8.08115 0.320438
\(637\) 0 0
\(638\) −22.3357 −0.884281
\(639\) 0.472136 0.0186774
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −17.2361 −0.680253
\(643\) 28.3607 1.11844 0.559218 0.829021i \(-0.311101\pi\)
0.559218 + 0.829021i \(0.311101\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 15.4164 0.606550
\(647\) −47.4164 −1.86413 −0.932066 0.362289i \(-0.881995\pi\)
−0.932066 + 0.362289i \(0.881995\pi\)
\(648\) 5.58394 0.219358
\(649\) 44.6715 1.75351
\(650\) 0 0
\(651\) 0 0
\(652\) 16.1623 0.632964
\(653\) 42.7638 1.67348 0.836738 0.547603i \(-0.184460\pi\)
0.836738 + 0.547603i \(0.184460\pi\)
\(654\) 31.1456 1.21789
\(655\) 0 0
\(656\) 37.7694 1.47465
\(657\) 2.76393 0.107831
\(658\) 0 0
\(659\) −8.47214 −0.330028 −0.165014 0.986291i \(-0.552767\pi\)
−0.165014 + 0.986291i \(0.552767\pi\)
\(660\) 0 0
\(661\) −3.81540 −0.148402 −0.0742009 0.997243i \(-0.523641\pi\)
−0.0742009 + 0.997243i \(0.523641\pi\)
\(662\) 19.9777 0.776455
\(663\) 4.00000 0.155347
\(664\) 36.1400 1.40250
\(665\) 0 0
\(666\) −15.4164 −0.597374
\(667\) 6.17345 0.239037
\(668\) −65.3050 −2.52672
\(669\) −17.8885 −0.691611
\(670\) 0 0
\(671\) −17.0630 −0.658709
\(672\) 0 0
\(673\) −30.8672 −1.18984 −0.594922 0.803783i \(-0.702817\pi\)
−0.594922 + 0.803783i \(0.702817\pi\)
\(674\) −9.52786 −0.367000
\(675\) 0 0
\(676\) 61.0689 2.34880
\(677\) 31.5967 1.21436 0.607181 0.794564i \(-0.292300\pi\)
0.607181 + 0.794564i \(0.292300\pi\)
\(678\) −10.6525 −0.409106
\(679\) 0 0
\(680\) 0 0
\(681\) −1.52786 −0.0585479
\(682\) 21.3050 0.815809
\(683\) −26.8798 −1.02853 −0.514264 0.857632i \(-0.671935\pi\)
−0.514264 + 0.857632i \(0.671935\pi\)
\(684\) 34.2323 1.30890
\(685\) 0 0
\(686\) 0 0
\(687\) 22.3357 0.852162
\(688\) −54.6603 −2.08391
\(689\) 9.98885 0.380545
\(690\) 0 0
\(691\) 34.2323 1.30226 0.651129 0.758967i \(-0.274296\pi\)
0.651129 + 0.758967i \(0.274296\pi\)
\(692\) 81.4853 3.09761
\(693\) 0 0
\(694\) 63.4853 2.40987
\(695\) 0 0
\(696\) 11.1679 0.423317
\(697\) 5.27275 0.199720
\(698\) 21.3050 0.806404
\(699\) −11.8965 −0.449969
\(700\) 0 0
\(701\) 8.83282 0.333611 0.166805 0.985990i \(-0.446655\pi\)
0.166805 + 0.985990i \(0.446655\pi\)
\(702\) 13.0756 0.493506
\(703\) −49.8885 −1.88158
\(704\) 21.0557 0.793568
\(705\) 0 0
\(706\) −8.08115 −0.304138
\(707\) 0 0
\(708\) −42.3134 −1.59024
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) 0 0
\(711\) 12.9443 0.485448
\(712\) −51.7082 −1.93785
\(713\) −5.88854 −0.220528
\(714\) 0 0
\(715\) 0 0
\(716\) −31.8885 −1.19173
\(717\) −7.52786 −0.281133
\(718\) 51.1233 1.90790
\(719\) 23.7931 0.887333 0.443666 0.896192i \(-0.353678\pi\)
0.443666 + 0.896192i \(0.353678\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 115.633 4.30343
\(723\) −6.17345 −0.229593
\(724\) −42.3134 −1.57257
\(725\) 0 0
\(726\) 22.4749 0.834122
\(727\) −1.52786 −0.0566653 −0.0283327 0.999599i \(-0.509020\pi\)
−0.0283327 + 0.999599i \(0.509020\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −7.63080 −0.282235
\(732\) 16.1623 0.597376
\(733\) 34.1803 1.26248 0.631240 0.775588i \(-0.282546\pi\)
0.631240 + 0.775588i \(0.282546\pi\)
\(734\) −39.9554 −1.47478
\(735\) 0 0
\(736\) 7.70820 0.284128
\(737\) −27.6085 −1.01697
\(738\) 17.2361 0.634468
\(739\) 24.9443 0.917590 0.458795 0.888542i \(-0.348281\pi\)
0.458795 + 0.888542i \(0.348281\pi\)
\(740\) 0 0
\(741\) 42.3134 1.55442
\(742\) 0 0
\(743\) 3.08672 0.113241 0.0566205 0.998396i \(-0.481968\pi\)
0.0566205 + 0.998396i \(0.481968\pi\)
\(744\) −10.6525 −0.390539
\(745\) 0 0
\(746\) 80.7214 2.95542
\(747\) 6.47214 0.236803
\(748\) −14.4721 −0.529154
\(749\) 0 0
\(750\) 0 0
\(751\) −10.8328 −0.395295 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(752\) −27.0557 −0.986621
\(753\) 2.35805 0.0859320
\(754\) 26.1511 0.952368
\(755\) 0 0
\(756\) 0 0
\(757\) −28.5092 −1.03618 −0.518092 0.855325i \(-0.673358\pi\)
−0.518092 + 0.855325i \(0.673358\pi\)
\(758\) 7.63080 0.277163
\(759\) −13.8042 −0.501062
\(760\) 0 0
\(761\) 4.54408 0.164723 0.0823613 0.996603i \(-0.473754\pi\)
0.0823613 + 0.996603i \(0.473754\pi\)
\(762\) −9.52786 −0.345158
\(763\) 0 0
\(764\) −14.9443 −0.540665
\(765\) 0 0
\(766\) 26.1511 0.944879
\(767\) −52.3023 −1.88853
\(768\) −32.4164 −1.16973
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 21.7082 0.781802
\(772\) −58.4757 −2.10459
\(773\) 14.6525 0.527013 0.263506 0.964658i \(-0.415121\pi\)
0.263506 + 0.964658i \(0.415121\pi\)
\(774\) −24.9443 −0.896603
\(775\) 0 0
\(776\) 56.8464 2.04067
\(777\) 0 0
\(778\) −29.6882 −1.06437
\(779\) 55.7771 1.99842
\(780\) 0 0
\(781\) −2.11146 −0.0755538
\(782\) 5.88854 0.210574
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 24.9443 0.889733
\(787\) −40.9443 −1.45951 −0.729753 0.683711i \(-0.760365\pi\)
−0.729753 + 0.683711i \(0.760365\pi\)
\(788\) −8.08115 −0.287879
\(789\) −15.4336 −0.549451
\(790\) 0 0
\(791\) 0 0
\(792\) −24.9721 −0.887346
\(793\) 19.9777 0.709429
\(794\) −23.0644 −0.818526
\(795\) 0 0
\(796\) −50.3946 −1.78619
\(797\) 27.2361 0.964751 0.482376 0.875965i \(-0.339774\pi\)
0.482376 + 0.875965i \(0.339774\pi\)
\(798\) 0 0
\(799\) −3.77709 −0.133624
\(800\) 0 0
\(801\) −9.26017 −0.327192
\(802\) 91.9794 3.24790
\(803\) −12.3607 −0.436199
\(804\) 26.1511 0.922280
\(805\) 0 0
\(806\) −24.9443 −0.878625
\(807\) −6.90212 −0.242966
\(808\) −73.0132 −2.56859
\(809\) −30.9443 −1.08794 −0.543971 0.839104i \(-0.683080\pi\)
−0.543971 + 0.839104i \(0.683080\pi\)
\(810\) 0 0
\(811\) 30.4169 1.06808 0.534041 0.845459i \(-0.320673\pi\)
0.534041 + 0.845459i \(0.320673\pi\)
\(812\) 0 0
\(813\) −18.0700 −0.633742
\(814\) 68.9443 2.41650
\(815\) 0 0
\(816\) 4.18034 0.146341
\(817\) −80.7214 −2.82408
\(818\) −84.3607 −2.94960
\(819\) 0 0
\(820\) 0 0
\(821\) 7.88854 0.275312 0.137656 0.990480i \(-0.456043\pi\)
0.137656 + 0.990480i \(0.456043\pi\)
\(822\) −20.1803 −0.703870
\(823\) 11.4462 0.398990 0.199495 0.979899i \(-0.436070\pi\)
0.199495 + 0.979899i \(0.436070\pi\)
\(824\) 8.53149 0.297209
\(825\) 0 0
\(826\) 0 0
\(827\) −46.8575 −1.62940 −0.814698 0.579886i \(-0.803097\pi\)
−0.814698 + 0.579886i \(0.803097\pi\)
\(828\) 13.0756 0.454408
\(829\) 17.6196 0.611956 0.305978 0.952039i \(-0.401017\pi\)
0.305978 + 0.952039i \(0.401017\pi\)
\(830\) 0 0
\(831\) 9.98885 0.346509
\(832\) −24.6525 −0.854671
\(833\) 0 0
\(834\) −35.5967 −1.23261
\(835\) 0 0
\(836\) −153.091 −5.29478
\(837\) −1.90770 −0.0659398
\(838\) −3.63932 −0.125718
\(839\) 52.3023 1.80568 0.902838 0.429981i \(-0.141480\pi\)
0.902838 + 0.429981i \(0.141480\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 41.1344 1.41759
\(843\) −22.0000 −0.757720
\(844\) −54.8328 −1.88742
\(845\) 0 0
\(846\) −12.3469 −0.424495
\(847\) 0 0
\(848\) 10.4392 0.358483
\(849\) 12.3607 0.424217
\(850\) 0 0
\(851\) −19.0557 −0.653222
\(852\) 2.00000 0.0685189
\(853\) 4.87539 0.166930 0.0834651 0.996511i \(-0.473401\pi\)
0.0834651 + 0.996511i \(0.473401\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −38.5410 −1.31730
\(857\) 45.1246 1.54143 0.770714 0.637182i \(-0.219900\pi\)
0.770714 + 0.637182i \(0.219900\pi\)
\(858\) −58.4757 −1.99633
\(859\) −0.450347 −0.0153656 −0.00768282 0.999970i \(-0.502446\pi\)
−0.00768282 + 0.999970i \(0.502446\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −11.1679 −0.380379
\(863\) 10.7175 0.364829 0.182414 0.983222i \(-0.441609\pi\)
0.182414 + 0.983222i \(0.441609\pi\)
\(864\) 2.49721 0.0849569
\(865\) 0 0
\(866\) 89.1710 3.03015
\(867\) −16.4164 −0.557530
\(868\) 0 0
\(869\) −57.8885 −1.96373
\(870\) 0 0
\(871\) 32.3246 1.09528
\(872\) 69.6436 2.35843
\(873\) 10.1803 0.344552
\(874\) 62.2911 2.10703
\(875\) 0 0
\(876\) 11.7082 0.395584
\(877\) 15.2616 0.515348 0.257674 0.966232i \(-0.417044\pi\)
0.257674 + 0.966232i \(0.417044\pi\)
\(878\) −60.5410 −2.04316
\(879\) 20.1803 0.680666
\(880\) 0 0
\(881\) 41.5848 1.40103 0.700513 0.713640i \(-0.252955\pi\)
0.700513 + 0.713640i \(0.252955\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 16.9443 0.569898
\(885\) 0 0
\(886\) −78.9017 −2.65075
\(887\) 35.7771 1.20128 0.600639 0.799521i \(-0.294913\pi\)
0.600639 + 0.799521i \(0.294913\pi\)
\(888\) −34.4721 −1.15681
\(889\) 0 0
\(890\) 0 0
\(891\) −4.47214 −0.149822
\(892\) −75.7771 −2.53720
\(893\) −39.9554 −1.33706
\(894\) −47.3079 −1.58221
\(895\) 0 0
\(896\) 0 0
\(897\) 16.1623 0.539643
\(898\) −42.5918 −1.42131
\(899\) −3.81540 −0.127251
\(900\) 0 0
\(901\) 1.45735 0.0485515
\(902\) −77.0820 −2.56655
\(903\) 0 0
\(904\) −23.8197 −0.792230
\(905\) 0 0
\(906\) −22.3357 −0.742055
\(907\) 39.9554 1.32670 0.663349 0.748311i \(-0.269135\pi\)
0.663349 + 0.748311i \(0.269135\pi\)
\(908\) −6.47214 −0.214785
\(909\) −13.0756 −0.433689
\(910\) 0 0
\(911\) 25.4164 0.842083 0.421042 0.907041i \(-0.361665\pi\)
0.421042 + 0.907041i \(0.361665\pi\)
\(912\) 44.2211 1.46431
\(913\) −28.9443 −0.957916
\(914\) 59.4164 1.96532
\(915\) 0 0
\(916\) 94.6157 3.12619
\(917\) 0 0
\(918\) 1.90770 0.0629635
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) 2.47214 0.0814596
\(922\) −92.0689 −3.03213
\(923\) 2.47214 0.0813713
\(924\) 0 0
\(925\) 0 0
\(926\) 71.1935 2.33956
\(927\) 1.52786 0.0501816
\(928\) 4.99442 0.163950
\(929\) −3.08672 −0.101272 −0.0506361 0.998717i \(-0.516125\pi\)
−0.0506361 + 0.998717i \(0.516125\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −50.3946 −1.65073
\(933\) −3.81540 −0.124911
\(934\) −68.4646 −2.24023
\(935\) 0 0
\(936\) 29.2379 0.955670
\(937\) −26.5410 −0.867057 −0.433529 0.901140i \(-0.642732\pi\)
−0.433529 + 0.901140i \(0.642732\pi\)
\(938\) 0 0
\(939\) 24.6525 0.804503
\(940\) 0 0
\(941\) −35.4113 −1.15438 −0.577188 0.816611i \(-0.695850\pi\)
−0.577188 + 0.816611i \(0.695850\pi\)
\(942\) −21.6071 −0.703996
\(943\) 21.3050 0.693785
\(944\) −54.6603 −1.77904
\(945\) 0 0
\(946\) 111.554 3.62694
\(947\) 14.5329 0.472257 0.236128 0.971722i \(-0.424121\pi\)
0.236128 + 0.971722i \(0.424121\pi\)
\(948\) 54.8328 1.78089
\(949\) 14.4721 0.469785
\(950\) 0 0
\(951\) −10.4392 −0.338514
\(952\) 0 0
\(953\) −51.8519 −1.67965 −0.839825 0.542858i \(-0.817342\pi\)
−0.839825 + 0.542858i \(0.817342\pi\)
\(954\) 4.76393 0.154238
\(955\) 0 0
\(956\) −31.8885 −1.03135
\(957\) −8.94427 −0.289127
\(958\) −71.1935 −2.30016
\(959\) 0 0
\(960\) 0 0
\(961\) −27.3607 −0.882603
\(962\) −80.7214 −2.60256
\(963\) −6.90212 −0.222418
\(964\) −26.1511 −0.842272
\(965\) 0 0
\(966\) 0 0
\(967\) 26.1511 0.840964 0.420482 0.907301i \(-0.361861\pi\)
0.420482 + 0.907301i \(0.361861\pi\)
\(968\) 50.2554 1.61527
\(969\) 6.17345 0.198320
\(970\) 0 0
\(971\) −58.4757 −1.87658 −0.938288 0.345855i \(-0.887589\pi\)
−0.938288 + 0.345855i \(0.887589\pi\)
\(972\) 4.23607 0.135872
\(973\) 0 0
\(974\) 24.9443 0.799266
\(975\) 0 0
\(976\) 20.8784 0.668301
\(977\) −24.2434 −0.775616 −0.387808 0.921740i \(-0.626768\pi\)
−0.387808 + 0.921740i \(0.626768\pi\)
\(978\) 9.52786 0.304667
\(979\) 41.4127 1.32356
\(980\) 0 0
\(981\) 12.4721 0.398205
\(982\) 45.8505 1.46315
\(983\) −38.8328 −1.23857 −0.619287 0.785165i \(-0.712578\pi\)
−0.619287 + 0.785165i \(0.712578\pi\)
\(984\) 38.5410 1.22864
\(985\) 0 0
\(986\) 3.81540 0.121507
\(987\) 0 0
\(988\) 179.243 5.70247
\(989\) −30.8328 −0.980427
\(990\) 0 0
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) −4.76393 −0.151255
\(993\) 8.00000 0.253872
\(994\) 0 0
\(995\) 0 0
\(996\) 27.4164 0.868722
\(997\) 27.7082 0.877528 0.438764 0.898602i \(-0.355416\pi\)
0.438764 + 0.898602i \(0.355416\pi\)
\(998\) 19.9777 0.632383
\(999\) −6.17345 −0.195319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3675.2.a.bv.1.4 4
5.2 odd 4 735.2.d.c.589.7 yes 8
5.3 odd 4 735.2.d.c.589.2 yes 8
5.4 even 2 3675.2.a.bt.1.1 4
7.6 odd 2 3675.2.a.bt.1.4 4
15.2 even 4 2205.2.d.m.1324.1 8
15.8 even 4 2205.2.d.m.1324.7 8
35.2 odd 12 735.2.q.h.214.8 16
35.3 even 12 735.2.q.h.79.7 16
35.12 even 12 735.2.q.h.214.7 16
35.13 even 4 735.2.d.c.589.1 8
35.17 even 12 735.2.q.h.79.2 16
35.18 odd 12 735.2.q.h.79.8 16
35.23 odd 12 735.2.q.h.214.1 16
35.27 even 4 735.2.d.c.589.8 yes 8
35.32 odd 12 735.2.q.h.79.1 16
35.33 even 12 735.2.q.h.214.2 16
35.34 odd 2 inner 3675.2.a.bv.1.1 4
105.62 odd 4 2205.2.d.m.1324.2 8
105.83 odd 4 2205.2.d.m.1324.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.d.c.589.1 8 35.13 even 4
735.2.d.c.589.2 yes 8 5.3 odd 4
735.2.d.c.589.7 yes 8 5.2 odd 4
735.2.d.c.589.8 yes 8 35.27 even 4
735.2.q.h.79.1 16 35.32 odd 12
735.2.q.h.79.2 16 35.17 even 12
735.2.q.h.79.7 16 35.3 even 12
735.2.q.h.79.8 16 35.18 odd 12
735.2.q.h.214.1 16 35.23 odd 12
735.2.q.h.214.2 16 35.33 even 12
735.2.q.h.214.7 16 35.12 even 12
735.2.q.h.214.8 16 35.2 odd 12
2205.2.d.m.1324.1 8 15.2 even 4
2205.2.d.m.1324.2 8 105.62 odd 4
2205.2.d.m.1324.7 8 15.8 even 4
2205.2.d.m.1324.8 8 105.83 odd 4
3675.2.a.bt.1.1 4 5.4 even 2
3675.2.a.bt.1.4 4 7.6 odd 2
3675.2.a.bv.1.1 4 35.34 odd 2 inner
3675.2.a.bv.1.4 4 1.1 even 1 trivial