Properties

Label 735.2.d.c.589.7
Level $735$
Weight $2$
Character 735.589
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(589,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.309760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} - 2x^{5} - x^{4} - 2x^{3} + 18x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 589.7
Root \(-0.748606 - 0.748606i\) of defining polynomial
Character \(\chi\) \(=\) 735.589
Dual form 735.2.d.c.589.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49721i q^{2} -1.00000i q^{3} -4.23607 q^{4} +(1.54336 - 1.61803i) q^{5} +2.49721 q^{6} -5.58394i q^{8} -1.00000 q^{9} +(4.04057 + 3.85410i) q^{10} -4.47214 q^{11} +4.23607i q^{12} -5.23607i q^{13} +(-1.61803 - 1.54336i) q^{15} +5.47214 q^{16} +0.763932i q^{17} -2.49721i q^{18} -8.08115 q^{19} +(-6.53779 + 6.85410i) q^{20} -11.1679i q^{22} -3.08672i q^{23} -5.58394 q^{24} +(-0.236068 - 4.99442i) q^{25} +13.0756 q^{26} +1.00000i q^{27} -2.00000 q^{29} +(3.85410 - 4.04057i) q^{30} -1.90770 q^{31} +2.49721i q^{32} +4.47214i q^{33} -1.90770 q^{34} +4.23607 q^{36} -6.17345i q^{37} -20.1803i q^{38} -5.23607 q^{39} +(-9.03500 - 8.61803i) q^{40} +6.90212 q^{41} +9.98885i q^{43} +18.9443 q^{44} +(-1.54336 + 1.61803i) q^{45} +7.70820 q^{46} -4.94427i q^{47} -5.47214i q^{48} +(12.4721 - 0.589512i) q^{50} +0.763932 q^{51} +22.1803i q^{52} -1.90770i q^{53} -2.49721 q^{54} +(-6.90212 + 7.23607i) q^{55} +8.08115i q^{57} -4.99442i q^{58} +9.98885 q^{59} +(6.85410 + 6.53779i) q^{60} +3.81540 q^{61} -4.76393i q^{62} +4.70820 q^{64} +(-8.47214 - 8.08115i) q^{65} -11.1679 q^{66} +6.17345i q^{67} -3.23607i q^{68} -3.08672 q^{69} +0.472136 q^{71} +5.58394i q^{72} -2.76393i q^{73} +15.4164 q^{74} +(-4.99442 + 0.236068i) q^{75} +34.2323 q^{76} -13.0756i q^{78} -12.9443 q^{79} +(8.44549 - 8.85410i) q^{80} +1.00000 q^{81} +17.2361i q^{82} -6.47214i q^{83} +(1.23607 + 1.17902i) q^{85} -24.9443 q^{86} +2.00000i q^{87} +24.9721i q^{88} +9.26017 q^{89} +(-4.04057 - 3.85410i) q^{90} +13.0756i q^{92} +1.90770i q^{93} +12.3469 q^{94} +(-12.4721 + 13.0756i) q^{95} +2.49721 q^{96} +10.1803i q^{97} +4.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} - 8 q^{9} - 4 q^{15} + 8 q^{16} + 16 q^{25} - 16 q^{29} + 4 q^{30} + 16 q^{36} - 24 q^{39} + 80 q^{44} + 8 q^{46} + 64 q^{50} + 24 q^{51} + 28 q^{60} - 16 q^{64} - 32 q^{65} - 32 q^{71} + 16 q^{74}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49721i 1.76580i 0.469565 + 0.882898i \(0.344411\pi\)
−0.469565 + 0.882898i \(0.655589\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.23607 −2.11803
\(5\) 1.54336 1.61803i 0.690212 0.723607i
\(6\) 2.49721 1.01948
\(7\) 0 0
\(8\) 5.58394i 1.97422i
\(9\) −1.00000 −0.333333
\(10\) 4.04057 + 3.85410i 1.27774 + 1.21877i
\(11\) −4.47214 −1.34840 −0.674200 0.738549i \(-0.735511\pi\)
−0.674200 + 0.738549i \(0.735511\pi\)
\(12\) 4.23607i 1.22285i
\(13\) 5.23607i 1.45222i −0.687576 0.726112i \(-0.741325\pi\)
0.687576 0.726112i \(-0.258675\pi\)
\(14\) 0 0
\(15\) −1.61803 1.54336i −0.417775 0.398494i
\(16\) 5.47214 1.36803
\(17\) 0.763932i 0.185281i 0.995700 + 0.0926404i \(0.0295307\pi\)
−0.995700 + 0.0926404i \(0.970469\pi\)
\(18\) 2.49721i 0.588599i
\(19\) −8.08115 −1.85394 −0.926971 0.375132i \(-0.877597\pi\)
−0.926971 + 0.375132i \(0.877597\pi\)
\(20\) −6.53779 + 6.85410i −1.46189 + 1.53262i
\(21\) 0 0
\(22\) 11.1679i 2.38100i
\(23\) 3.08672i 0.643626i −0.946803 0.321813i \(-0.895708\pi\)
0.946803 0.321813i \(-0.104292\pi\)
\(24\) −5.58394 −1.13982
\(25\) −0.236068 4.99442i −0.0472136 0.998885i
\(26\) 13.0756 2.56433
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 3.85410 4.04057i 0.703660 0.737705i
\(31\) −1.90770 −0.342633 −0.171317 0.985216i \(-0.554802\pi\)
−0.171317 + 0.985216i \(0.554802\pi\)
\(32\) 2.49721i 0.441449i
\(33\) 4.47214i 0.778499i
\(34\) −1.90770 −0.327168
\(35\) 0 0
\(36\) 4.23607 0.706011
\(37\) 6.17345i 1.01491i −0.861679 0.507454i \(-0.830587\pi\)
0.861679 0.507454i \(-0.169413\pi\)
\(38\) 20.1803i 3.27368i
\(39\) −5.23607 −0.838442
\(40\) −9.03500 8.61803i −1.42856 1.36263i
\(41\) 6.90212 1.07793 0.538965 0.842328i \(-0.318815\pi\)
0.538965 + 0.842328i \(0.318815\pi\)
\(42\) 0 0
\(43\) 9.98885i 1.52329i 0.647997 + 0.761643i \(0.275607\pi\)
−0.647997 + 0.761643i \(0.724393\pi\)
\(44\) 18.9443 2.85596
\(45\) −1.54336 + 1.61803i −0.230071 + 0.241202i
\(46\) 7.70820 1.13651
\(47\) 4.94427i 0.721196i −0.932721 0.360598i \(-0.882573\pi\)
0.932721 0.360598i \(-0.117427\pi\)
\(48\) 5.47214i 0.789835i
\(49\) 0 0
\(50\) 12.4721 0.589512i 1.76383 0.0833696i
\(51\) 0.763932 0.106972
\(52\) 22.1803i 3.07586i
\(53\) 1.90770i 0.262043i −0.991380 0.131021i \(-0.958174\pi\)
0.991380 0.131021i \(-0.0418257\pi\)
\(54\) −2.49721 −0.339828
\(55\) −6.90212 + 7.23607i −0.930682 + 0.975711i
\(56\) 0 0
\(57\) 8.08115i 1.07037i
\(58\) 4.99442i 0.655800i
\(59\) 9.98885 1.30044 0.650219 0.759747i \(-0.274677\pi\)
0.650219 + 0.759747i \(0.274677\pi\)
\(60\) 6.85410 + 6.53779i 0.884861 + 0.844025i
\(61\) 3.81540 0.488512 0.244256 0.969711i \(-0.421456\pi\)
0.244256 + 0.969711i \(0.421456\pi\)
\(62\) 4.76393i 0.605020i
\(63\) 0 0
\(64\) 4.70820 0.588525
\(65\) −8.47214 8.08115i −1.05084 1.00234i
\(66\) −11.1679 −1.37467
\(67\) 6.17345i 0.754207i 0.926171 + 0.377103i \(0.123080\pi\)
−0.926171 + 0.377103i \(0.876920\pi\)
\(68\) 3.23607i 0.392431i
\(69\) −3.08672 −0.371598
\(70\) 0 0
\(71\) 0.472136 0.0560322 0.0280161 0.999607i \(-0.491081\pi\)
0.0280161 + 0.999607i \(0.491081\pi\)
\(72\) 5.58394i 0.658073i
\(73\) 2.76393i 0.323494i −0.986832 0.161747i \(-0.948287\pi\)
0.986832 0.161747i \(-0.0517128\pi\)
\(74\) 15.4164 1.79212
\(75\) −4.99442 + 0.236068i −0.576706 + 0.0272588i
\(76\) 34.2323 3.92671
\(77\) 0 0
\(78\) 13.0756i 1.48052i
\(79\) −12.9443 −1.45634 −0.728172 0.685394i \(-0.759630\pi\)
−0.728172 + 0.685394i \(0.759630\pi\)
\(80\) 8.44549 8.85410i 0.944234 0.989919i
\(81\) 1.00000 0.111111
\(82\) 17.2361i 1.90341i
\(83\) 6.47214i 0.710409i −0.934789 0.355205i \(-0.884411\pi\)
0.934789 0.355205i \(-0.115589\pi\)
\(84\) 0 0
\(85\) 1.23607 + 1.17902i 0.134070 + 0.127883i
\(86\) −24.9443 −2.68981
\(87\) 2.00000i 0.214423i
\(88\) 24.9721i 2.66204i
\(89\) 9.26017 0.981576 0.490788 0.871279i \(-0.336709\pi\)
0.490788 + 0.871279i \(0.336709\pi\)
\(90\) −4.04057 3.85410i −0.425914 0.406258i
\(91\) 0 0
\(92\) 13.0756i 1.36322i
\(93\) 1.90770i 0.197819i
\(94\) 12.3469 1.27349
\(95\) −12.4721 + 13.0756i −1.27961 + 1.34153i
\(96\) 2.49721 0.254871
\(97\) 10.1803i 1.03366i 0.856089 + 0.516828i \(0.172887\pi\)
−0.856089 + 0.516828i \(0.827113\pi\)
\(98\) 0 0
\(99\) 4.47214 0.449467
\(100\) 1.00000 + 21.1567i 0.100000 + 2.11567i
\(101\) −13.0756 −1.30107 −0.650534 0.759477i \(-0.725455\pi\)
−0.650534 + 0.759477i \(0.725455\pi\)
\(102\) 1.90770i 0.188890i
\(103\) 1.52786i 0.150545i −0.997163 0.0752725i \(-0.976017\pi\)
0.997163 0.0752725i \(-0.0239827\pi\)
\(104\) −29.2379 −2.86701
\(105\) 0 0
\(106\) 4.76393 0.462714
\(107\) 6.90212i 0.667254i −0.942705 0.333627i \(-0.891727\pi\)
0.942705 0.333627i \(-0.108273\pi\)
\(108\) 4.23607i 0.407616i
\(109\) −12.4721 −1.19461 −0.597307 0.802013i \(-0.703763\pi\)
−0.597307 + 0.802013i \(0.703763\pi\)
\(110\) −18.0700 17.2361i −1.72291 1.64339i
\(111\) −6.17345 −0.585958
\(112\) 0 0
\(113\) 4.26575i 0.401288i 0.979664 + 0.200644i \(0.0643034\pi\)
−0.979664 + 0.200644i \(0.935697\pi\)
\(114\) −20.1803 −1.89006
\(115\) −4.99442 4.76393i −0.465732 0.444239i
\(116\) 8.47214 0.786618
\(117\) 5.23607i 0.484075i
\(118\) 24.9443i 2.29631i
\(119\) 0 0
\(120\) −8.61803 + 9.03500i −0.786715 + 0.824779i
\(121\) 9.00000 0.818182
\(122\) 9.52786i 0.862612i
\(123\) 6.90212i 0.622344i
\(124\) 8.08115 0.725709
\(125\) −8.44549 7.32624i −0.755387 0.655279i
\(126\) 0 0
\(127\) 3.81540i 0.338562i −0.985568 0.169281i \(-0.945855\pi\)
0.985568 0.169281i \(-0.0541445\pi\)
\(128\) 16.7518i 1.48066i
\(129\) 9.98885 0.879469
\(130\) 20.1803 21.1567i 1.76993 1.85557i
\(131\) 9.98885 0.872730 0.436365 0.899770i \(-0.356266\pi\)
0.436365 + 0.899770i \(0.356266\pi\)
\(132\) 18.9443i 1.64889i
\(133\) 0 0
\(134\) −15.4164 −1.33177
\(135\) 1.61803 + 1.54336i 0.139258 + 0.132831i
\(136\) 4.26575 0.365785
\(137\) 8.08115i 0.690419i −0.938526 0.345210i \(-0.887808\pi\)
0.938526 0.345210i \(-0.112192\pi\)
\(138\) 7.70820i 0.656166i
\(139\) 14.2546 1.20906 0.604530 0.796583i \(-0.293361\pi\)
0.604530 + 0.796583i \(0.293361\pi\)
\(140\) 0 0
\(141\) −4.94427 −0.416383
\(142\) 1.17902i 0.0989415i
\(143\) 23.4164i 1.95818i
\(144\) −5.47214 −0.456011
\(145\) −3.08672 + 3.23607i −0.256338 + 0.268741i
\(146\) 6.90212 0.571224
\(147\) 0 0
\(148\) 26.1511i 2.14961i
\(149\) 18.9443 1.55198 0.775988 0.630748i \(-0.217252\pi\)
0.775988 + 0.630748i \(0.217252\pi\)
\(150\) −0.589512 12.4721i −0.0481334 1.01835i
\(151\) −8.94427 −0.727875 −0.363937 0.931423i \(-0.618568\pi\)
−0.363937 + 0.931423i \(0.618568\pi\)
\(152\) 45.1246i 3.66009i
\(153\) 0.763932i 0.0617602i
\(154\) 0 0
\(155\) −2.94427 + 3.08672i −0.236490 + 0.247932i
\(156\) 22.1803 1.77585
\(157\) 8.65248i 0.690543i −0.938503 0.345271i \(-0.887787\pi\)
0.938503 0.345271i \(-0.112213\pi\)
\(158\) 32.3246i 2.57161i
\(159\) −1.90770 −0.151290
\(160\) 4.04057 + 3.85410i 0.319435 + 0.304694i
\(161\) 0 0
\(162\) 2.49721i 0.196200i
\(163\) 3.81540i 0.298845i −0.988773 0.149423i \(-0.952259\pi\)
0.988773 0.149423i \(-0.0477415\pi\)
\(164\) −29.2379 −2.28309
\(165\) 7.23607 + 6.90212i 0.563327 + 0.537330i
\(166\) 16.1623 1.25444
\(167\) 15.4164i 1.19296i −0.802629 0.596479i \(-0.796566\pi\)
0.802629 0.596479i \(-0.203434\pi\)
\(168\) 0 0
\(169\) −14.4164 −1.10895
\(170\) −2.94427 + 3.08672i −0.225815 + 0.236741i
\(171\) 8.08115 0.617981
\(172\) 42.3134i 3.22637i
\(173\) 19.2361i 1.46249i −0.682114 0.731246i \(-0.738939\pi\)
0.682114 0.731246i \(-0.261061\pi\)
\(174\) −4.99442 −0.378626
\(175\) 0 0
\(176\) −24.4721 −1.84466
\(177\) 9.98885i 0.750808i
\(178\) 23.1246i 1.73326i
\(179\) 7.52786 0.562659 0.281329 0.959611i \(-0.409225\pi\)
0.281329 + 0.959611i \(0.409225\pi\)
\(180\) 6.53779 6.85410i 0.487298 0.510875i
\(181\) −9.98885 −0.742465 −0.371233 0.928540i \(-0.621065\pi\)
−0.371233 + 0.928540i \(0.621065\pi\)
\(182\) 0 0
\(183\) 3.81540i 0.282043i
\(184\) −17.2361 −1.27066
\(185\) −9.98885 9.52786i −0.734395 0.700502i
\(186\) −4.76393 −0.349308
\(187\) 3.41641i 0.249832i
\(188\) 20.9443i 1.52752i
\(189\) 0 0
\(190\) −32.6525 31.1456i −2.36886 2.25954i
\(191\) −3.52786 −0.255267 −0.127634 0.991821i \(-0.540738\pi\)
−0.127634 + 0.991821i \(0.540738\pi\)
\(192\) 4.70820i 0.339785i
\(193\) 13.8042i 0.993652i 0.867850 + 0.496826i \(0.165501\pi\)
−0.867850 + 0.496826i \(0.834499\pi\)
\(194\) −25.4225 −1.82523
\(195\) −8.08115 + 8.47214i −0.578703 + 0.606702i
\(196\) 0 0
\(197\) 1.90770i 0.135918i −0.997688 0.0679590i \(-0.978351\pi\)
0.997688 0.0679590i \(-0.0216487\pi\)
\(198\) 11.1679i 0.793666i
\(199\) 11.8965 0.843324 0.421662 0.906753i \(-0.361447\pi\)
0.421662 + 0.906753i \(0.361447\pi\)
\(200\) −27.8885 + 1.31819i −1.97202 + 0.0932100i
\(201\) 6.17345 0.435441
\(202\) 32.6525i 2.29742i
\(203\) 0 0
\(204\) −3.23607 −0.226570
\(205\) 10.6525 11.1679i 0.744001 0.779998i
\(206\) 3.81540 0.265832
\(207\) 3.08672i 0.214542i
\(208\) 28.6525i 1.98669i
\(209\) 36.1400 2.49986
\(210\) 0 0
\(211\) −12.9443 −0.891120 −0.445560 0.895252i \(-0.646995\pi\)
−0.445560 + 0.895252i \(0.646995\pi\)
\(212\) 8.08115i 0.555016i
\(213\) 0.472136i 0.0323502i
\(214\) 17.2361 1.17823
\(215\) 16.1623 + 15.4164i 1.10226 + 1.05139i
\(216\) 5.58394 0.379939
\(217\) 0 0
\(218\) 31.1456i 2.10944i
\(219\) −2.76393 −0.186769
\(220\) 29.2379 30.6525i 1.97122 2.06659i
\(221\) 4.00000 0.269069
\(222\) 15.4164i 1.03468i
\(223\) 17.8885i 1.19791i 0.800784 + 0.598953i \(0.204416\pi\)
−0.800784 + 0.598953i \(0.795584\pi\)
\(224\) 0 0
\(225\) 0.236068 + 4.99442i 0.0157379 + 0.332962i
\(226\) −10.6525 −0.708592
\(227\) 1.52786i 0.101408i −0.998714 0.0507039i \(-0.983854\pi\)
0.998714 0.0507039i \(-0.0161465\pi\)
\(228\) 34.2323i 2.26709i
\(229\) −22.3357 −1.47599 −0.737994 0.674808i \(-0.764227\pi\)
−0.737994 + 0.674808i \(0.764227\pi\)
\(230\) 11.8965 12.4721i 0.784435 0.822388i
\(231\) 0 0
\(232\) 11.1679i 0.733207i
\(233\) 11.8965i 0.779369i 0.920948 + 0.389684i \(0.127416\pi\)
−0.920948 + 0.389684i \(0.872584\pi\)
\(234\) −13.0756 −0.854777
\(235\) −8.00000 7.63080i −0.521862 0.497779i
\(236\) −42.3134 −2.75437
\(237\) 12.9443i 0.840821i
\(238\) 0 0
\(239\) 7.52786 0.486937 0.243469 0.969909i \(-0.421715\pi\)
0.243469 + 0.969909i \(0.421715\pi\)
\(240\) −8.85410 8.44549i −0.571530 0.545154i
\(241\) −6.17345 −0.397667 −0.198833 0.980033i \(-0.563715\pi\)
−0.198833 + 0.980033i \(0.563715\pi\)
\(242\) 22.4749i 1.44474i
\(243\) 1.00000i 0.0641500i
\(244\) −16.1623 −1.03468
\(245\) 0 0
\(246\) 17.2361 1.09893
\(247\) 42.3134i 2.69234i
\(248\) 10.6525i 0.676433i
\(249\) −6.47214 −0.410155
\(250\) 18.2952 21.0902i 1.15709 1.33386i
\(251\) 2.35805 0.148839 0.0744193 0.997227i \(-0.476290\pi\)
0.0744193 + 0.997227i \(0.476290\pi\)
\(252\) 0 0
\(253\) 13.8042i 0.867866i
\(254\) 9.52786 0.597831
\(255\) 1.17902 1.23607i 0.0738333 0.0774056i
\(256\) −32.4164 −2.02603
\(257\) 21.7082i 1.35412i 0.735928 + 0.677060i \(0.236746\pi\)
−0.735928 + 0.677060i \(0.763254\pi\)
\(258\) 24.9443i 1.55296i
\(259\) 0 0
\(260\) 35.8885 + 34.2323i 2.22571 + 2.12300i
\(261\) 2.00000 0.123797
\(262\) 24.9443i 1.54106i
\(263\) 15.4336i 0.951678i 0.879532 + 0.475839i \(0.157855\pi\)
−0.879532 + 0.475839i \(0.842145\pi\)
\(264\) 24.9721 1.53693
\(265\) −3.08672 2.94427i −0.189616 0.180865i
\(266\) 0 0
\(267\) 9.26017i 0.566713i
\(268\) 26.1511i 1.59744i
\(269\) 6.90212 0.420830 0.210415 0.977612i \(-0.432518\pi\)
0.210415 + 0.977612i \(0.432518\pi\)
\(270\) −3.85410 + 4.04057i −0.234553 + 0.245902i
\(271\) −18.0700 −1.09767 −0.548837 0.835929i \(-0.684929\pi\)
−0.548837 + 0.835929i \(0.684929\pi\)
\(272\) 4.18034i 0.253470i
\(273\) 0 0
\(274\) 20.1803 1.21914
\(275\) 1.05573 + 22.3357i 0.0636628 + 1.34690i
\(276\) 13.0756 0.787057
\(277\) 9.98885i 0.600172i 0.953912 + 0.300086i \(0.0970153\pi\)
−0.953912 + 0.300086i \(0.902985\pi\)
\(278\) 35.5967i 2.13495i
\(279\) 1.90770 0.114211
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 12.3469i 0.735247i
\(283\) 12.3607i 0.734766i −0.930070 0.367383i \(-0.880254\pi\)
0.930070 0.367383i \(-0.119746\pi\)
\(284\) −2.00000 −0.118678
\(285\) 13.0756 + 12.4721i 0.774530 + 0.738786i
\(286\) −58.4757 −3.45774
\(287\) 0 0
\(288\) 2.49721i 0.147150i
\(289\) 16.4164 0.965671
\(290\) −8.08115 7.70820i −0.474541 0.452641i
\(291\) 10.1803 0.596782
\(292\) 11.7082i 0.685171i
\(293\) 20.1803i 1.17895i −0.807787 0.589474i \(-0.799335\pi\)
0.807787 0.589474i \(-0.200665\pi\)
\(294\) 0 0
\(295\) 15.4164 16.1623i 0.897578 0.941005i
\(296\) −34.4721 −2.00365
\(297\) 4.47214i 0.259500i
\(298\) 47.3079i 2.74047i
\(299\) −16.1623 −0.934690
\(300\) 21.1567 1.00000i 1.22148 0.0577350i
\(301\) 0 0
\(302\) 22.3357i 1.28528i
\(303\) 13.0756i 0.751172i
\(304\) −44.2211 −2.53626
\(305\) 5.88854 6.17345i 0.337177 0.353491i
\(306\) 1.90770 0.109056
\(307\) 2.47214i 0.141092i 0.997509 + 0.0705461i \(0.0224742\pi\)
−0.997509 + 0.0705461i \(0.977526\pi\)
\(308\) 0 0
\(309\) −1.52786 −0.0869171
\(310\) −7.70820 7.35247i −0.437797 0.417592i
\(311\) −3.81540 −0.216352 −0.108176 0.994132i \(-0.534501\pi\)
−0.108176 + 0.994132i \(0.534501\pi\)
\(312\) 29.2379i 1.65527i
\(313\) 24.6525i 1.39344i −0.717343 0.696720i \(-0.754642\pi\)
0.717343 0.696720i \(-0.245358\pi\)
\(314\) 21.6071 1.21936
\(315\) 0 0
\(316\) 54.8328 3.08459
\(317\) 10.4392i 0.586324i −0.956063 0.293162i \(-0.905293\pi\)
0.956063 0.293162i \(-0.0947075\pi\)
\(318\) 4.76393i 0.267148i
\(319\) 8.94427 0.500783
\(320\) 7.26646 7.61803i 0.406208 0.425861i
\(321\) −6.90212 −0.385239
\(322\) 0 0
\(323\) 6.17345i 0.343500i
\(324\) −4.23607 −0.235337
\(325\) −26.1511 + 1.23607i −1.45060 + 0.0685647i
\(326\) 9.52786 0.527700
\(327\) 12.4721i 0.689711i
\(328\) 38.5410i 2.12807i
\(329\) 0 0
\(330\) −17.2361 + 18.0700i −0.948814 + 0.994721i
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 27.4164i 1.50467i
\(333\) 6.17345i 0.338303i
\(334\) 38.4980 2.10652
\(335\) 9.98885 + 9.52786i 0.545749 + 0.520563i
\(336\) 0 0
\(337\) 3.81540i 0.207838i −0.994586 0.103919i \(-0.966862\pi\)
0.994586 0.103919i \(-0.0331383\pi\)
\(338\) 36.0008i 1.95819i
\(339\) 4.26575 0.231684
\(340\) −5.23607 4.99442i −0.283966 0.270861i
\(341\) 8.53149 0.462006
\(342\) 20.1803i 1.09123i
\(343\) 0 0
\(344\) 55.7771 3.00730
\(345\) −4.76393 + 4.99442i −0.256481 + 0.268891i
\(346\) 48.0365 2.58246
\(347\) 25.4225i 1.36475i 0.731003 + 0.682375i \(0.239053\pi\)
−0.731003 + 0.682375i \(0.760947\pi\)
\(348\) 8.47214i 0.454154i
\(349\) −8.53149 −0.456680 −0.228340 0.973581i \(-0.573330\pi\)
−0.228340 + 0.973581i \(0.573330\pi\)
\(350\) 0 0
\(351\) 5.23607 0.279481
\(352\) 11.1679i 0.595250i
\(353\) 3.23607i 0.172239i 0.996285 + 0.0861193i \(0.0274466\pi\)
−0.996285 + 0.0861193i \(0.972553\pi\)
\(354\) 24.9443 1.32577
\(355\) 0.728677 0.763932i 0.0386741 0.0405453i
\(356\) −39.2267 −2.07901
\(357\) 0 0
\(358\) 18.7987i 0.993541i
\(359\) −20.4721 −1.08048 −0.540239 0.841512i \(-0.681666\pi\)
−0.540239 + 0.841512i \(0.681666\pi\)
\(360\) 9.03500 + 8.61803i 0.476186 + 0.454210i
\(361\) 46.3050 2.43710
\(362\) 24.9443i 1.31104i
\(363\) 9.00000i 0.472377i
\(364\) 0 0
\(365\) −4.47214 4.26575i −0.234082 0.223279i
\(366\) 9.52786 0.498029
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 16.8910i 0.880503i
\(369\) −6.90212 −0.359310
\(370\) 23.7931 24.9443i 1.23694 1.29679i
\(371\) 0 0
\(372\) 8.08115i 0.418988i
\(373\) 32.3246i 1.67370i −0.547429 0.836852i \(-0.684393\pi\)
0.547429 0.836852i \(-0.315607\pi\)
\(374\) 8.53149 0.441153
\(375\) −7.32624 + 8.44549i −0.378325 + 0.436123i
\(376\) −27.6085 −1.42380
\(377\) 10.4721i 0.539342i
\(378\) 0 0
\(379\) −3.05573 −0.156962 −0.0784811 0.996916i \(-0.525007\pi\)
−0.0784811 + 0.996916i \(0.525007\pi\)
\(380\) 52.8328 55.3890i 2.71027 2.84140i
\(381\) −3.81540 −0.195469
\(382\) 8.80982i 0.450750i
\(383\) 10.4721i 0.535101i −0.963544 0.267551i \(-0.913786\pi\)
0.963544 0.267551i \(-0.0862142\pi\)
\(384\) 16.7518 0.854862
\(385\) 0 0
\(386\) −34.4721 −1.75459
\(387\) 9.98885i 0.507762i
\(388\) 43.1246i 2.18932i
\(389\) 11.8885 0.602773 0.301387 0.953502i \(-0.402551\pi\)
0.301387 + 0.953502i \(0.402551\pi\)
\(390\) −21.1567 20.1803i −1.07131 1.02187i
\(391\) 2.35805 0.119252
\(392\) 0 0
\(393\) 9.98885i 0.503871i
\(394\) 4.76393 0.240003
\(395\) −19.9777 + 20.9443i −1.00519 + 1.05382i
\(396\) −18.9443 −0.951985
\(397\) 9.23607i 0.463545i −0.972770 0.231772i \(-0.925548\pi\)
0.972770 0.231772i \(-0.0744525\pi\)
\(398\) 29.7082i 1.48914i
\(399\) 0 0
\(400\) −1.29180 27.3302i −0.0645898 1.36651i
\(401\) 36.8328 1.83934 0.919672 0.392689i \(-0.128455\pi\)
0.919672 + 0.392689i \(0.128455\pi\)
\(402\) 15.4164i 0.768901i
\(403\) 9.98885i 0.497580i
\(404\) 55.3890 2.75571
\(405\) 1.54336 1.61803i 0.0766903 0.0804008i
\(406\) 0 0
\(407\) 27.6085i 1.36850i
\(408\) 4.26575i 0.211186i
\(409\) 33.7819 1.67041 0.835205 0.549939i \(-0.185349\pi\)
0.835205 + 0.549939i \(0.185349\pi\)
\(410\) 27.8885 + 26.6015i 1.37732 + 1.31375i
\(411\) −8.08115 −0.398614
\(412\) 6.47214i 0.318859i
\(413\) 0 0
\(414\) −7.70820 −0.378838
\(415\) −10.4721 9.98885i −0.514057 0.490333i
\(416\) 13.0756 0.641083
\(417\) 14.2546i 0.698051i
\(418\) 90.2492i 4.41423i
\(419\) 1.45735 0.0711964 0.0355982 0.999366i \(-0.488666\pi\)
0.0355982 + 0.999366i \(0.488666\pi\)
\(420\) 0 0
\(421\) 16.4721 0.802803 0.401401 0.915902i \(-0.368523\pi\)
0.401401 + 0.915902i \(0.368523\pi\)
\(422\) 32.3246i 1.57354i
\(423\) 4.94427i 0.240399i
\(424\) −10.6525 −0.517330
\(425\) 3.81540 0.180340i 0.185074 0.00874777i
\(426\) 1.17902 0.0571239
\(427\) 0 0
\(428\) 29.2379i 1.41327i
\(429\) 23.4164 1.13055
\(430\) −38.4980 + 40.3607i −1.85654 + 1.94636i
\(431\) −4.47214 −0.215415 −0.107708 0.994183i \(-0.534351\pi\)
−0.107708 + 0.994183i \(0.534351\pi\)
\(432\) 5.47214i 0.263278i
\(433\) 35.7082i 1.71603i −0.513627 0.858013i \(-0.671699\pi\)
0.513627 0.858013i \(-0.328301\pi\)
\(434\) 0 0
\(435\) 3.23607 + 3.08672i 0.155158 + 0.147997i
\(436\) 52.8328 2.53023
\(437\) 24.9443i 1.19325i
\(438\) 6.90212i 0.329796i
\(439\) 24.2434 1.15708 0.578538 0.815655i \(-0.303623\pi\)
0.578538 + 0.815655i \(0.303623\pi\)
\(440\) 40.4057 + 38.5410i 1.92627 + 1.83737i
\(441\) 0 0
\(442\) 9.98885i 0.475121i
\(443\) 31.5959i 1.50117i 0.660775 + 0.750584i \(0.270228\pi\)
−0.660775 + 0.750584i \(0.729772\pi\)
\(444\) 26.1511 1.24108
\(445\) 14.2918 14.9833i 0.677496 0.710275i
\(446\) −44.6715 −2.11526
\(447\) 18.9443i 0.896033i
\(448\) 0 0
\(449\) 17.0557 0.804910 0.402455 0.915440i \(-0.368157\pi\)
0.402455 + 0.915440i \(0.368157\pi\)
\(450\) −12.4721 + 0.589512i −0.587942 + 0.0277899i
\(451\) −30.8672 −1.45348
\(452\) 18.0700i 0.849941i
\(453\) 8.94427i 0.420239i
\(454\) 3.81540 0.179066
\(455\) 0 0
\(456\) 45.1246 2.11315
\(457\) 23.7931i 1.11299i 0.830850 + 0.556497i \(0.187855\pi\)
−0.830850 + 0.556497i \(0.812145\pi\)
\(458\) 55.7771i 2.60629i
\(459\) −0.763932 −0.0356573
\(460\) 21.1567 + 20.1803i 0.986437 + 0.940913i
\(461\) −36.8687 −1.71715 −0.858573 0.512692i \(-0.828648\pi\)
−0.858573 + 0.512692i \(0.828648\pi\)
\(462\) 0 0
\(463\) 28.5092i 1.32493i −0.749091 0.662467i \(-0.769509\pi\)
0.749091 0.662467i \(-0.230491\pi\)
\(464\) −10.9443 −0.508075
\(465\) 3.08672 + 2.94427i 0.143143 + 0.136537i
\(466\) −29.7082 −1.37621
\(467\) 27.4164i 1.26868i −0.773054 0.634340i \(-0.781272\pi\)
0.773054 0.634340i \(-0.218728\pi\)
\(468\) 22.1803i 1.02529i
\(469\) 0 0
\(470\) 19.0557 19.9777i 0.878975 0.921502i
\(471\) −8.65248 −0.398685
\(472\) 55.7771i 2.56735i
\(473\) 44.6715i 2.05400i
\(474\) −32.3246 −1.48472
\(475\) 1.90770 + 40.3607i 0.0875313 + 1.85187i
\(476\) 0 0
\(477\) 1.90770i 0.0873476i
\(478\) 18.7987i 0.859831i
\(479\) 28.5092 1.30262 0.651309 0.758813i \(-0.274220\pi\)
0.651309 + 0.758813i \(0.274220\pi\)
\(480\) 3.85410 4.04057i 0.175915 0.184426i
\(481\) −32.3246 −1.47387
\(482\) 15.4164i 0.702198i
\(483\) 0 0
\(484\) −38.1246 −1.73294
\(485\) 16.4721 + 15.7119i 0.747961 + 0.713443i
\(486\) 2.49721 0.113276
\(487\) 9.98885i 0.452638i 0.974053 + 0.226319i \(0.0726692\pi\)
−0.974053 + 0.226319i \(0.927331\pi\)
\(488\) 21.3050i 0.964430i
\(489\) −3.81540 −0.172538
\(490\) 0 0
\(491\) 18.3607 0.828606 0.414303 0.910139i \(-0.364025\pi\)
0.414303 + 0.910139i \(0.364025\pi\)
\(492\) 29.2379i 1.31814i
\(493\) 1.52786i 0.0688115i
\(494\) −105.666 −4.75412
\(495\) 6.90212 7.23607i 0.310227 0.325237i
\(496\) −10.4392 −0.468734
\(497\) 0 0
\(498\) 16.1623i 0.724250i
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 35.7757 + 31.0344i 1.59994 + 1.38790i
\(501\) −15.4164 −0.688754
\(502\) 5.88854i 0.262819i
\(503\) 29.5279i 1.31658i −0.752763 0.658291i \(-0.771280\pi\)
0.752763 0.658291i \(-0.228720\pi\)
\(504\) 0 0
\(505\) −20.1803 + 21.1567i −0.898013 + 0.941462i
\(506\) −34.4721 −1.53247
\(507\) 14.4164i 0.640255i
\(508\) 16.1623i 0.717086i
\(509\) 13.0756 0.579565 0.289782 0.957093i \(-0.406417\pi\)
0.289782 + 0.957093i \(0.406417\pi\)
\(510\) 3.08672 + 2.94427i 0.136682 + 0.130375i
\(511\) 0 0
\(512\) 47.4470i 2.09688i
\(513\) 8.08115i 0.356791i
\(514\) −54.2100 −2.39110
\(515\) −2.47214 2.35805i −0.108935 0.103908i
\(516\) −42.3134 −1.86275
\(517\) 22.1115i 0.972461i
\(518\) 0 0
\(519\) −19.2361 −0.844370
\(520\) −45.1246 + 47.3079i −1.97885 + 2.07459i
\(521\) 39.2267 1.71855 0.859277 0.511511i \(-0.170914\pi\)
0.859277 + 0.511511i \(0.170914\pi\)
\(522\) 4.99442i 0.218600i
\(523\) 15.0557i 0.658341i −0.944270 0.329171i \(-0.893231\pi\)
0.944270 0.329171i \(-0.106769\pi\)
\(524\) −42.3134 −1.84847
\(525\) 0 0
\(526\) −38.5410 −1.68047
\(527\) 1.45735i 0.0634833i
\(528\) 24.4721i 1.06501i
\(529\) 13.4721 0.585745
\(530\) 7.35247 7.70820i 0.319371 0.334823i
\(531\) −9.98885 −0.433479
\(532\) 0 0
\(533\) 36.1400i 1.56540i
\(534\) 23.1246 1.00070
\(535\) −11.1679 10.6525i −0.482829 0.460547i
\(536\) 34.4721 1.48897
\(537\) 7.52786i 0.324851i
\(538\) 17.2361i 0.743100i
\(539\) 0 0
\(540\) −6.85410 6.53779i −0.294954 0.281342i
\(541\) −24.4721 −1.05214 −0.526070 0.850441i \(-0.676335\pi\)
−0.526070 + 0.850441i \(0.676335\pi\)
\(542\) 45.1246i 1.93827i
\(543\) 9.98885i 0.428663i
\(544\) −1.90770 −0.0817920
\(545\) −19.2490 + 20.1803i −0.824537 + 0.864431i
\(546\) 0 0
\(547\) 38.4980i 1.64606i −0.568000 0.823029i \(-0.692283\pi\)
0.568000 0.823029i \(-0.307717\pi\)
\(548\) 34.2323i 1.46233i
\(549\) −3.81540 −0.162837
\(550\) −55.7771 + 2.63638i −2.37834 + 0.112415i
\(551\) 16.1623 0.688537
\(552\) 17.2361i 0.733616i
\(553\) 0 0
\(554\) −24.9443 −1.05978
\(555\) −9.52786 + 9.98885i −0.404435 + 0.424003i
\(556\) −60.3834 −2.56083
\(557\) 30.4169i 1.28881i −0.764686 0.644403i \(-0.777106\pi\)
0.764686 0.644403i \(-0.222894\pi\)
\(558\) 4.76393i 0.201673i
\(559\) 52.3023 2.21215
\(560\) 0 0
\(561\) −3.41641 −0.144241
\(562\) 54.9387i 2.31745i
\(563\) 13.8885i 0.585332i −0.956215 0.292666i \(-0.905458\pi\)
0.956215 0.292666i \(-0.0945425\pi\)
\(564\) 20.9443 0.881913
\(565\) 6.90212 + 6.58359i 0.290375 + 0.276974i
\(566\) 30.8672 1.29745
\(567\) 0 0
\(568\) 2.63638i 0.110620i
\(569\) −36.8328 −1.54411 −0.772056 0.635555i \(-0.780772\pi\)
−0.772056 + 0.635555i \(0.780772\pi\)
\(570\) −31.1456 + 32.6525i −1.30454 + 1.36766i
\(571\) −42.8328 −1.79250 −0.896249 0.443552i \(-0.853718\pi\)
−0.896249 + 0.443552i \(0.853718\pi\)
\(572\) 99.1935i 4.14749i
\(573\) 3.52786i 0.147379i
\(574\) 0 0
\(575\) −15.4164 + 0.728677i −0.642909 + 0.0303879i
\(576\) −4.70820 −0.196175
\(577\) 16.6525i 0.693252i 0.938003 + 0.346626i \(0.112673\pi\)
−0.938003 + 0.346626i \(0.887327\pi\)
\(578\) 40.9953i 1.70518i
\(579\) 13.8042 0.573685
\(580\) 13.0756 13.7082i 0.542934 0.569202i
\(581\) 0 0
\(582\) 25.4225i 1.05380i
\(583\) 8.53149i 0.353338i
\(584\) −15.4336 −0.638648
\(585\) 8.47214 + 8.08115i 0.350280 + 0.334114i
\(586\) 50.3946 2.08178
\(587\) 8.94427i 0.369170i 0.982817 + 0.184585i \(0.0590940\pi\)
−0.982817 + 0.184585i \(0.940906\pi\)
\(588\) 0 0
\(589\) 15.4164 0.635222
\(590\) 40.3607 + 38.4980i 1.66162 + 1.58494i
\(591\) −1.90770 −0.0784723
\(592\) 33.7819i 1.38843i
\(593\) 17.7082i 0.727189i 0.931557 + 0.363594i \(0.118451\pi\)
−0.931557 + 0.363594i \(0.881549\pi\)
\(594\) 11.1679 0.458223
\(595\) 0 0
\(596\) −80.2492 −3.28714
\(597\) 11.8965i 0.486893i
\(598\) 40.3607i 1.65047i
\(599\) −9.41641 −0.384744 −0.192372 0.981322i \(-0.561618\pi\)
−0.192372 + 0.981322i \(0.561618\pi\)
\(600\) 1.31819 + 27.8885i 0.0538148 + 1.13855i
\(601\) −12.3469 −0.503640 −0.251820 0.967774i \(-0.581029\pi\)
−0.251820 + 0.967774i \(0.581029\pi\)
\(602\) 0 0
\(603\) 6.17345i 0.251402i
\(604\) 37.8885 1.54166
\(605\) 13.8903 14.5623i 0.564719 0.592042i
\(606\) −32.6525 −1.32642
\(607\) 38.8328i 1.57618i 0.615563 + 0.788088i \(0.288929\pi\)
−0.615563 + 0.788088i \(0.711071\pi\)
\(608\) 20.1803i 0.818421i
\(609\) 0 0
\(610\) 15.4164 + 14.7049i 0.624192 + 0.595386i
\(611\) −25.8885 −1.04734
\(612\) 3.23607i 0.130810i
\(613\) 44.6715i 1.80426i −0.431460 0.902132i \(-0.642001\pi\)
0.431460 0.902132i \(-0.357999\pi\)
\(614\) −6.17345 −0.249140
\(615\) −11.1679 10.6525i −0.450332 0.429549i
\(616\) 0 0
\(617\) 20.4280i 0.822402i 0.911545 + 0.411201i \(0.134891\pi\)
−0.911545 + 0.411201i \(0.865109\pi\)
\(618\) 3.81540i 0.153478i
\(619\) −22.7861 −0.915850 −0.457925 0.888991i \(-0.651407\pi\)
−0.457925 + 0.888991i \(0.651407\pi\)
\(620\) 12.4721 13.0756i 0.500893 0.525128i
\(621\) 3.08672 0.123866
\(622\) 9.52786i 0.382033i
\(623\) 0 0
\(624\) −28.6525 −1.14702
\(625\) −24.8885 + 2.35805i −0.995542 + 0.0943219i
\(626\) 61.5625 2.46053
\(627\) 36.1400i 1.44329i
\(628\) 36.6525i 1.46259i
\(629\) 4.71609 0.188043
\(630\) 0 0
\(631\) 27.0557 1.07707 0.538536 0.842603i \(-0.318978\pi\)
0.538536 + 0.842603i \(0.318978\pi\)
\(632\) 72.2800i 2.87514i
\(633\) 12.9443i 0.514489i
\(634\) 26.0689 1.03533
\(635\) −6.17345 5.88854i −0.244986 0.233680i
\(636\) 8.08115 0.320438
\(637\) 0 0
\(638\) 22.3357i 0.884281i
\(639\) −0.472136 −0.0186774
\(640\) 27.1050 + 25.8541i 1.07142 + 1.02197i
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 17.2361i 0.680253i
\(643\) 28.3607i 1.11844i −0.829021 0.559218i \(-0.811101\pi\)
0.829021 0.559218i \(-0.188899\pi\)
\(644\) 0 0
\(645\) 15.4164 16.1623i 0.607020 0.636390i
\(646\) 15.4164 0.606550
\(647\) 47.4164i 1.86413i −0.362289 0.932066i \(-0.618005\pi\)
0.362289 0.932066i \(-0.381995\pi\)
\(648\) 5.58394i 0.219358i
\(649\) −44.6715 −1.75351
\(650\) −3.08672 65.3050i −0.121071 2.56147i
\(651\) 0 0
\(652\) 16.1623i 0.632964i
\(653\) 42.7638i 1.67348i −0.547603 0.836738i \(-0.684460\pi\)
0.547603 0.836738i \(-0.315540\pi\)
\(654\) −31.1456 −1.21789
\(655\) 15.4164 16.1623i 0.602369 0.631513i
\(656\) 37.7694 1.47465
\(657\) 2.76393i 0.107831i
\(658\) 0 0
\(659\) 8.47214 0.330028 0.165014 0.986291i \(-0.447233\pi\)
0.165014 + 0.986291i \(0.447233\pi\)
\(660\) −30.6525 29.2379i −1.19315 1.13808i
\(661\) −3.81540 −0.148402 −0.0742009 0.997243i \(-0.523641\pi\)
−0.0742009 + 0.997243i \(0.523641\pi\)
\(662\) 19.9777i 0.776455i
\(663\) 4.00000i 0.155347i
\(664\) −36.1400 −1.40250
\(665\) 0 0
\(666\) −15.4164 −0.597374
\(667\) 6.17345i 0.239037i
\(668\) 65.3050i 2.52672i
\(669\) 17.8885 0.691611
\(670\) −23.7931 + 24.9443i −0.919208 + 0.963681i
\(671\) −17.0630 −0.658709
\(672\) 0 0
\(673\) 30.8672i 1.18984i 0.803783 + 0.594922i \(0.202817\pi\)
−0.803783 + 0.594922i \(0.797183\pi\)
\(674\) 9.52786 0.367000
\(675\) 4.99442 0.236068i 0.192235 0.00908626i
\(676\) 61.0689 2.34880
\(677\) 31.5967i 1.21436i 0.794564 + 0.607181i \(0.207700\pi\)
−0.794564 + 0.607181i \(0.792300\pi\)
\(678\) 10.6525i 0.409106i
\(679\) 0 0
\(680\) 6.58359 6.90212i 0.252469 0.264684i
\(681\) −1.52786 −0.0585479
\(682\) 21.3050i 0.815809i
\(683\) 26.8798i 1.02853i 0.857632 + 0.514264i \(0.171935\pi\)
−0.857632 + 0.514264i \(0.828065\pi\)
\(684\) −34.2323 −1.30890
\(685\) −13.0756 12.4721i −0.499592 0.476536i
\(686\) 0 0
\(687\) 22.3357i 0.852162i
\(688\) 54.6603i 2.08391i
\(689\) −9.98885 −0.380545
\(690\) −12.4721 11.8965i −0.474806 0.452894i
\(691\) 34.2323 1.30226 0.651129 0.758967i \(-0.274296\pi\)
0.651129 + 0.758967i \(0.274296\pi\)
\(692\) 81.4853i 3.09761i
\(693\) 0 0
\(694\) −63.4853 −2.40987
\(695\) 22.0000 23.0644i 0.834508 0.874883i
\(696\) 11.1679 0.423317
\(697\) 5.27275i 0.199720i
\(698\) 21.3050i 0.806404i
\(699\) 11.8965 0.449969
\(700\) 0 0
\(701\) 8.83282 0.333611 0.166805 0.985990i \(-0.446655\pi\)
0.166805 + 0.985990i \(0.446655\pi\)
\(702\) 13.0756i 0.493506i
\(703\) 49.8885i 1.88158i
\(704\) −21.0557 −0.793568
\(705\) −7.63080 + 8.00000i −0.287393 + 0.301297i
\(706\) −8.08115 −0.304138
\(707\) 0 0
\(708\) 42.3134i 1.59024i
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 1.90770 + 1.81966i 0.0715947 + 0.0682906i
\(711\) 12.9443 0.485448
\(712\) 51.7082i 1.93785i
\(713\) 5.88854i 0.220528i
\(714\) 0 0
\(715\) 37.8885 + 36.1400i 1.41695 + 1.35156i
\(716\) −31.8885 −1.19173
\(717\) 7.52786i 0.281133i
\(718\) 51.1233i 1.90790i
\(719\) −23.7931 −0.887333 −0.443666 0.896192i \(-0.646322\pi\)
−0.443666 + 0.896192i \(0.646322\pi\)
\(720\) −8.44549 + 8.85410i −0.314745 + 0.329973i
\(721\) 0 0
\(722\) 115.633i 4.30343i
\(723\) 6.17345i 0.229593i
\(724\) 42.3134 1.57257
\(725\) 0.472136 + 9.98885i 0.0175347 + 0.370977i
\(726\) 22.4749 0.834122
\(727\) 1.52786i 0.0566653i −0.999599 0.0283327i \(-0.990980\pi\)
0.999599 0.0283327i \(-0.00901978\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 10.6525 11.1679i 0.394266 0.413341i
\(731\) −7.63080 −0.282235
\(732\) 16.1623i 0.597376i
\(733\) 34.1803i 1.26248i −0.775588 0.631240i \(-0.782546\pi\)
0.775588 0.631240i \(-0.217454\pi\)
\(734\) 39.9554 1.47478
\(735\) 0 0
\(736\) 7.70820 0.284128
\(737\) 27.6085i 1.01697i
\(738\) 17.2361i 0.634468i
\(739\) −24.9443 −0.917590 −0.458795 0.888542i \(-0.651719\pi\)
−0.458795 + 0.888542i \(0.651719\pi\)
\(740\) 42.3134 + 40.3607i 1.55547 + 1.48369i
\(741\) 42.3134 1.55442
\(742\) 0 0
\(743\) 3.08672i 0.113241i −0.998396 0.0566205i \(-0.981968\pi\)
0.998396 0.0566205i \(-0.0180325\pi\)
\(744\) 10.6525 0.390539
\(745\) 29.2379 30.6525i 1.07119 1.12302i
\(746\) 80.7214 2.95542
\(747\) 6.47214i 0.236803i
\(748\) 14.4721i 0.529154i
\(749\) 0 0
\(750\) −21.0902 18.2952i −0.770104 0.668045i
\(751\) −10.8328 −0.395295 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(752\) 27.0557i 0.986621i
\(753\) 2.35805i 0.0859320i
\(754\) −26.1511 −0.952368
\(755\) −13.8042 + 14.4721i −0.502388 + 0.526695i
\(756\) 0 0
\(757\) 28.5092i 1.03618i −0.855325 0.518092i \(-0.826642\pi\)
0.855325 0.518092i \(-0.173358\pi\)
\(758\) 7.63080i 0.277163i
\(759\) 13.8042 0.501062
\(760\) 73.0132 + 69.6436i 2.64847 + 2.52624i
\(761\) 4.54408 0.164723 0.0823613 0.996603i \(-0.473754\pi\)
0.0823613 + 0.996603i \(0.473754\pi\)
\(762\) 9.52786i 0.345158i
\(763\) 0 0
\(764\) 14.9443 0.540665
\(765\) −1.23607 1.17902i −0.0446901 0.0426277i
\(766\) 26.1511 0.944879
\(767\) 52.3023i 1.88853i
\(768\) 32.4164i 1.16973i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 21.7082 0.781802
\(772\) 58.4757i 2.10459i
\(773\) 14.6525i 0.527013i −0.964658 0.263506i \(-0.915121\pi\)
0.964658 0.263506i \(-0.0848790\pi\)
\(774\) 24.9443 0.896603
\(775\) 0.450347 + 9.52786i 0.0161769 + 0.342251i
\(776\) 56.8464 2.04067
\(777\) 0 0
\(778\) 29.6882i 1.06437i
\(779\) −55.7771 −1.99842
\(780\) 34.2323 35.8885i 1.22571 1.28502i
\(781\) −2.11146 −0.0755538
\(782\) 5.88854i 0.210574i
\(783\) 2.00000i 0.0714742i
\(784\) 0 0
\(785\) −14.0000 13.3539i −0.499681 0.476621i
\(786\) 24.9443 0.889733
\(787\) 40.9443i 1.45951i −0.683711 0.729753i \(-0.739635\pi\)
0.683711 0.729753i \(-0.260365\pi\)
\(788\) 8.08115i 0.287879i
\(789\) 15.4336 0.549451
\(790\) −52.3023 49.8885i −1.86083 1.77495i
\(791\) 0 0
\(792\) 24.9721i 0.887346i
\(793\) 19.9777i 0.709429i
\(794\) 23.0644 0.818526
\(795\) −2.94427 + 3.08672i −0.104423 + 0.109475i
\(796\) −50.3946 −1.78619
\(797\) 27.2361i 0.964751i 0.875965 + 0.482376i \(0.160226\pi\)
−0.875965 + 0.482376i \(0.839774\pi\)
\(798\) 0 0
\(799\) 3.77709 0.133624
\(800\) 12.4721 0.589512i 0.440957 0.0208424i
\(801\) −9.26017 −0.327192
\(802\) 91.9794i 3.24790i
\(803\) 12.3607i 0.436199i
\(804\) −26.1511 −0.922280
\(805\) 0 0
\(806\) −24.9443 −0.878625
\(807\) 6.90212i 0.242966i
\(808\) 73.0132i 2.56859i
\(809\) 30.9443 1.08794 0.543971 0.839104i \(-0.316920\pi\)
0.543971 + 0.839104i \(0.316920\pi\)
\(810\) 4.04057 + 3.85410i 0.141971 + 0.135419i
\(811\) 30.4169 1.06808 0.534041 0.845459i \(-0.320673\pi\)
0.534041 + 0.845459i \(0.320673\pi\)
\(812\) 0 0
\(813\) 18.0700i 0.633742i
\(814\) −68.9443 −2.41650
\(815\) −6.17345 5.88854i −0.216246 0.206267i
\(816\) 4.18034 0.146341
\(817\) 80.7214i 2.82408i
\(818\) 84.3607i 2.94960i
\(819\) 0 0
\(820\) −45.1246 + 47.3079i −1.57582 + 1.65206i
\(821\) 7.88854 0.275312 0.137656 0.990480i \(-0.456043\pi\)
0.137656 + 0.990480i \(0.456043\pi\)
\(822\) 20.1803i 0.703870i
\(823\) 11.4462i 0.398990i −0.979899 0.199495i \(-0.936070\pi\)
0.979899 0.199495i \(-0.0639301\pi\)
\(824\) −8.53149 −0.297209
\(825\) 22.3357 1.05573i 0.777631 0.0367557i
\(826\) 0 0
\(827\) 46.8575i 1.62940i −0.579886 0.814698i \(-0.696903\pi\)
0.579886 0.814698i \(-0.303097\pi\)
\(828\) 13.0756i 0.454408i
\(829\) −17.6196 −0.611956 −0.305978 0.952039i \(-0.598983\pi\)
−0.305978 + 0.952039i \(0.598983\pi\)
\(830\) 24.9443 26.1511i 0.865828 0.907719i
\(831\) 9.98885 0.346509
\(832\) 24.6525i 0.854671i
\(833\) 0 0
\(834\) 35.5967 1.23261
\(835\) −24.9443 23.7931i −0.863232 0.823394i
\(836\) −153.091 −5.29478
\(837\) 1.90770i 0.0659398i
\(838\) 3.63932i 0.125718i
\(839\) −52.3023 −1.80568 −0.902838 0.429981i \(-0.858520\pi\)
−0.902838 + 0.429981i \(0.858520\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 41.1344i 1.41759i
\(843\) 22.0000i 0.757720i
\(844\) 54.8328 1.88742
\(845\) −22.2497 + 23.3262i −0.765414 + 0.802447i
\(846\) −12.3469 −0.424495
\(847\) 0 0
\(848\) 10.4392i 0.358483i
\(849\) −12.3607 −0.424217
\(850\) 0.450347 + 9.52786i 0.0154468 + 0.326803i
\(851\) −19.0557 −0.653222
\(852\) 2.00000i 0.0685189i
\(853\) 4.87539i 0.166930i −0.996511 0.0834651i \(-0.973401\pi\)
0.996511 0.0834651i \(-0.0265987\pi\)
\(854\) 0 0
\(855\) 12.4721 13.0756i 0.426538 0.447175i
\(856\) −38.5410 −1.31730
\(857\) 45.1246i 1.54143i 0.637182 + 0.770714i \(0.280100\pi\)
−0.637182 + 0.770714i \(0.719900\pi\)
\(858\) 58.4757i 1.99633i
\(859\) 0.450347 0.0153656 0.00768282 0.999970i \(-0.497554\pi\)
0.00768282 + 0.999970i \(0.497554\pi\)
\(860\) −68.4646 65.3050i −2.33462 2.22688i
\(861\) 0 0
\(862\) 11.1679i 0.380379i
\(863\) 10.7175i 0.364829i −0.983222 0.182414i \(-0.941609\pi\)
0.983222 0.182414i \(-0.0583912\pi\)
\(864\) −2.49721 −0.0849569
\(865\) −31.1246 29.6882i −1.05827 1.00943i
\(866\) 89.1710 3.03015
\(867\) 16.4164i 0.557530i
\(868\) 0 0
\(869\) 57.8885 1.96373
\(870\) −7.70820 + 8.08115i −0.261333 + 0.273977i
\(871\) 32.3246 1.09528
\(872\) 69.6436i 2.35843i
\(873\) 10.1803i 0.344552i
\(874\) −62.2911 −2.10703
\(875\) 0 0
\(876\) 11.7082 0.395584
\(877\) 15.2616i 0.515348i 0.966232 + 0.257674i \(0.0829560\pi\)
−0.966232 + 0.257674i \(0.917044\pi\)
\(878\) 60.5410i 2.04316i
\(879\) −20.1803 −0.680666
\(880\) −37.7694 + 39.5967i −1.27320 + 1.33481i
\(881\) 41.5848 1.40103 0.700513 0.713640i \(-0.252955\pi\)
0.700513 + 0.713640i \(0.252955\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −16.9443 −0.569898
\(885\) −16.1623 15.4164i −0.543290 0.518217i
\(886\) −78.9017 −2.65075
\(887\) 35.7771i 1.20128i 0.799521 + 0.600639i \(0.205087\pi\)
−0.799521 + 0.600639i \(0.794913\pi\)
\(888\) 34.4721i 1.15681i
\(889\) 0 0
\(890\) 37.4164 + 35.6896i 1.25420 + 1.19632i
\(891\) −4.47214 −0.149822
\(892\) 75.7771i 2.53720i
\(893\) 39.9554i 1.33706i
\(894\) 47.3079 1.58221
\(895\) 11.6182 12.1803i 0.388354 0.407144i
\(896\) 0 0
\(897\) 16.1623i 0.539643i
\(898\) 42.5918i 1.42131i
\(899\) 3.81540 0.127251
\(900\) −1.00000 21.1567i −0.0333333 0.705224i
\(901\) 1.45735 0.0485515
\(902\) 77.0820i 2.56655i
\(903\) 0 0
\(904\) 23.8197 0.792230
\(905\) −15.4164 + 16.1623i −0.512459 + 0.537253i
\(906\) −22.3357 −0.742055
\(907\) 39.9554i 1.32670i 0.748311 + 0.663349i \(0.230865\pi\)
−0.748311 + 0.663349i \(0.769135\pi\)
\(908\) 6.47214i 0.214785i
\(909\) 13.0756 0.433689
\(910\) 0 0
\(911\) 25.4164 0.842083 0.421042 0.907041i \(-0.361665\pi\)
0.421042 + 0.907041i \(0.361665\pi\)
\(912\) 44.2211i 1.46431i
\(913\) 28.9443i 0.957916i
\(914\) −59.4164 −1.96532
\(915\) −6.17345 5.88854i −0.204088 0.194669i
\(916\) 94.6157 3.12619
\(917\) 0 0
\(918\) 1.90770i 0.0629635i
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) −26.6015 + 27.8885i −0.877025 + 0.919458i
\(921\) 2.47214 0.0814596
\(922\) 92.0689i 3.03213i
\(923\) 2.47214i 0.0813713i
\(924\) 0 0
\(925\) −30.8328 + 1.45735i −1.01378 + 0.0479175i
\(926\) 71.1935 2.33956
\(927\) 1.52786i 0.0501816i
\(928\) 4.99442i 0.163950i
\(929\) 3.08672 0.101272 0.0506361 0.998717i \(-0.483875\pi\)
0.0506361 + 0.998717i \(0.483875\pi\)
\(930\) −7.35247 + 7.70820i −0.241097 + 0.252762i
\(931\) 0 0
\(932\) 50.3946i 1.65073i
\(933\) 3.81540i 0.124911i
\(934\) 68.4646 2.24023
\(935\) −5.52786 5.27275i −0.180780 0.172437i
\(936\) 29.2379 0.955670
\(937\) 26.5410i 0.867057i −0.901140 0.433529i \(-0.857268\pi\)
0.901140 0.433529i \(-0.142732\pi\)
\(938\) 0 0
\(939\) −24.6525 −0.804503
\(940\) 33.8885 + 32.3246i 1.10532 + 1.05431i
\(941\) −35.4113 −1.15438 −0.577188 0.816611i \(-0.695850\pi\)
−0.577188 + 0.816611i \(0.695850\pi\)
\(942\) 21.6071i 0.703996i
\(943\) 21.3050i 0.693785i
\(944\) 54.6603 1.77904
\(945\) 0 0
\(946\) 111.554 3.62694
\(947\) 14.5329i 0.472257i 0.971722 + 0.236128i \(0.0758786\pi\)
−0.971722 + 0.236128i \(0.924121\pi\)
\(948\) 54.8328i 1.78089i
\(949\) −14.4721 −0.469785
\(950\) −100.789 + 4.76393i −3.27003 + 0.154562i
\(951\) −10.4392 −0.338514
\(952\) 0 0
\(953\) 51.8519i 1.67965i 0.542858 + 0.839825i \(0.317342\pi\)
−0.542858 + 0.839825i \(0.682658\pi\)
\(954\) −4.76393 −0.154238
\(955\) −5.44477 + 5.70820i −0.176189 + 0.184713i
\(956\) −31.8885 −1.03135
\(957\) 8.94427i 0.289127i
\(958\) 71.1935i 2.30016i
\(959\) 0 0
\(960\) −7.61803 7.26646i −0.245871 0.234524i
\(961\) −27.3607 −0.882603
\(962\) 80.7214i 2.60256i
\(963\) 6.90212i 0.222418i
\(964\) 26.1511 0.842272
\(965\) 22.3357 + 21.3050i 0.719013 + 0.685831i
\(966\) 0 0
\(967\) 26.1511i 0.840964i 0.907301 + 0.420482i \(0.138139\pi\)
−0.907301 + 0.420482i \(0.861861\pi\)
\(968\) 50.2554i 1.61527i
\(969\) −6.17345 −0.198320
\(970\) −39.2361 + 41.1344i −1.25979 + 1.32075i
\(971\) −58.4757 −1.87658 −0.938288 0.345855i \(-0.887589\pi\)
−0.938288 + 0.345855i \(0.887589\pi\)
\(972\) 4.23607i 0.135872i
\(973\) 0 0
\(974\) −24.9443 −0.799266
\(975\) 1.23607 + 26.1511i 0.0395859 + 0.837507i
\(976\) 20.8784 0.668301
\(977\) 24.2434i 0.775616i −0.921740 0.387808i \(-0.873232\pi\)
0.921740 0.387808i \(-0.126768\pi\)
\(978\) 9.52786i 0.304667i
\(979\) −41.4127 −1.32356
\(980\) 0 0
\(981\) 12.4721 0.398205
\(982\) 45.8505i 1.46315i
\(983\) 38.8328i 1.23857i 0.785165 + 0.619287i \(0.212578\pi\)
−0.785165 + 0.619287i \(0.787422\pi\)
\(984\) −38.5410 −1.22864
\(985\) −3.08672 2.94427i −0.0983512 0.0938123i
\(986\) 3.81540 0.121507
\(987\) 0 0
\(988\) 179.243i 5.70247i
\(989\) 30.8328 0.980427
\(990\) 18.0700 + 17.2361i 0.574302 + 0.547798i
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 4.76393i 0.151255i
\(993\) 8.00000i 0.253872i
\(994\) 0 0
\(995\) 18.3607 19.2490i 0.582073 0.610235i
\(996\) 27.4164 0.868722
\(997\) 27.7082i 0.877528i 0.898602 + 0.438764i \(0.144584\pi\)
−0.898602 + 0.438764i \(0.855416\pi\)
\(998\) 19.9777i 0.632383i
\(999\) 6.17345 0.195319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.d.c.589.7 yes 8
3.2 odd 2 2205.2.d.m.1324.1 8
5.2 odd 4 3675.2.a.bt.1.1 4
5.3 odd 4 3675.2.a.bv.1.4 4
5.4 even 2 inner 735.2.d.c.589.2 yes 8
7.2 even 3 735.2.q.h.214.8 16
7.3 odd 6 735.2.q.h.79.2 16
7.4 even 3 735.2.q.h.79.1 16
7.5 odd 6 735.2.q.h.214.7 16
7.6 odd 2 inner 735.2.d.c.589.8 yes 8
15.14 odd 2 2205.2.d.m.1324.7 8
21.20 even 2 2205.2.d.m.1324.2 8
35.4 even 6 735.2.q.h.79.8 16
35.9 even 6 735.2.q.h.214.1 16
35.13 even 4 3675.2.a.bt.1.4 4
35.19 odd 6 735.2.q.h.214.2 16
35.24 odd 6 735.2.q.h.79.7 16
35.27 even 4 3675.2.a.bv.1.1 4
35.34 odd 2 inner 735.2.d.c.589.1 8
105.104 even 2 2205.2.d.m.1324.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.d.c.589.1 8 35.34 odd 2 inner
735.2.d.c.589.2 yes 8 5.4 even 2 inner
735.2.d.c.589.7 yes 8 1.1 even 1 trivial
735.2.d.c.589.8 yes 8 7.6 odd 2 inner
735.2.q.h.79.1 16 7.4 even 3
735.2.q.h.79.2 16 7.3 odd 6
735.2.q.h.79.7 16 35.24 odd 6
735.2.q.h.79.8 16 35.4 even 6
735.2.q.h.214.1 16 35.9 even 6
735.2.q.h.214.2 16 35.19 odd 6
735.2.q.h.214.7 16 7.5 odd 6
735.2.q.h.214.8 16 7.2 even 3
2205.2.d.m.1324.1 8 3.2 odd 2
2205.2.d.m.1324.2 8 21.20 even 2
2205.2.d.m.1324.7 8 15.14 odd 2
2205.2.d.m.1324.8 8 105.104 even 2
3675.2.a.bt.1.1 4 5.2 odd 4
3675.2.a.bt.1.4 4 35.13 even 4
3675.2.a.bv.1.1 4 35.27 even 4
3675.2.a.bv.1.4 4 5.3 odd 4