Properties

Label 8-104e4-1.1-c1e4-0-5
Degree $8$
Conductor $116985856$
Sign $1$
Analytic cond. $0.475599$
Root an. cond. $0.911287$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 6·3-s + 8·4-s − 8·5-s + 24·6-s − 12·7-s − 8·8-s + 16·9-s + 32·10-s − 4·11-s − 48·12-s + 48·14-s + 48·15-s − 4·16-s − 6·17-s − 64·18-s − 6·19-s − 64·20-s + 72·21-s + 16·22-s − 6·23-s + 48·24-s + 26·25-s − 24·27-s − 96·28-s − 192·30-s + 32·32-s + ⋯
L(s)  = 1  − 2.82·2-s − 3.46·3-s + 4·4-s − 3.57·5-s + 9.79·6-s − 4.53·7-s − 2.82·8-s + 16/3·9-s + 10.1·10-s − 1.20·11-s − 13.8·12-s + 12.8·14-s + 12.3·15-s − 16-s − 1.45·17-s − 15.0·18-s − 1.37·19-s − 14.3·20-s + 15.7·21-s + 3.41·22-s − 1.25·23-s + 9.79·24-s + 26/5·25-s − 4.61·27-s − 18.1·28-s − 35.0·30-s + 5.65·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.475599\)
Root analytic conductor: \(0.911287\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{12} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
good3$D_4\times C_2$ \( 1 + 2 p T + 20 T^{2} + 16 p T^{3} + 91 T^{4} + 16 p^{2} T^{5} + 20 p^{2} T^{6} + 2 p^{4} T^{7} + p^{4} T^{8} \)
5$C_2^2$ \( ( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 6 T + 5 T^{2} - 18 T^{3} + 60 T^{4} - 18 p T^{5} + 5 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 6 T - 8 T^{2} + 36 T^{3} + 891 T^{4} + 36 p T^{5} - 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 6 T + 8 T^{2} - 108 T^{3} - 573 T^{4} - 108 p T^{5} + 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^3$ \( 1 + 49 T^{2} + 1560 T^{4} + 49 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 100 T^{2} + 4314 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + 12 T + p T^{2} )^{2}( 1 - 12 T + 107 T^{2} - 12 p T^{3} + p^{2} T^{4} ) \)
41$D_4\times C_2$ \( 1 + 18 T + 201 T^{2} + 1674 T^{3} + 11396 T^{4} + 1674 p T^{5} + 201 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 12 T + 110 T^{2} - 744 T^{3} + 4059 T^{4} - 744 p T^{5} + 110 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 132 T^{2} + 8474 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 98 T^{2} + 6291 T^{4} - 98 p^{2} T^{6} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 8 T - 58 T^{2} + 32 T^{3} + 7627 T^{4} + 32 p T^{5} - 58 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$$\times$$C_2^2$ \( ( 1 + 47 T^{2} + p^{2} T^{4} )( 1 + 74 T^{2} + p^{2} T^{4} ) \)
67$D_4\times C_2$ \( 1 + 18 T + 112 T^{2} + 1404 T^{3} + 18747 T^{4} + 1404 p T^{5} + 112 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 6 T + 36 T^{2} + 144 T^{3} - 3613 T^{4} + 144 p T^{5} + 36 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 - 4 T + 158 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 12 T + 222 T^{2} - 2088 T^{3} + 26627 T^{4} - 2088 p T^{5} + 222 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^3$ \( 1 + 158 T^{2} + 15555 T^{4} + 158 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68541476786181182995949486373, −10.45942435308007440831151171291, −10.32069971646691621635120490554, −9.983686543351787194198763159585, −9.959275773227621639853646702370, −9.367278159471309647633797666211, −8.986403236483997724332395838970, −8.786923276720999196671280305504, −8.740548967189365823097484865780, −7.890101517039449672594169451293, −7.79482891601130147892503056776, −7.78396103446661067938911222170, −7.21601832516443392535352343096, −6.70241883468960821824616526454, −6.67002848047013952318864383646, −6.57648236943004574351513053516, −6.36987589232564461131403420787, −5.69704383225246339218584884348, −5.57173060992550828612275010275, −4.82549975335547338381834631445, −4.31439426193152263666412656159, −4.14899314323525325604034123143, −3.58033679028000759983194361425, −3.28122465418330377340162477398, −2.46386245216985561034633903850, 0, 0, 0, 0, 2.46386245216985561034633903850, 3.28122465418330377340162477398, 3.58033679028000759983194361425, 4.14899314323525325604034123143, 4.31439426193152263666412656159, 4.82549975335547338381834631445, 5.57173060992550828612275010275, 5.69704383225246339218584884348, 6.36987589232564461131403420787, 6.57648236943004574351513053516, 6.67002848047013952318864383646, 6.70241883468960821824616526454, 7.21601832516443392535352343096, 7.78396103446661067938911222170, 7.79482891601130147892503056776, 7.890101517039449672594169451293, 8.740548967189365823097484865780, 8.786923276720999196671280305504, 8.986403236483997724332395838970, 9.367278159471309647633797666211, 9.959275773227621639853646702370, 9.983686543351787194198763159585, 10.32069971646691621635120490554, 10.45942435308007440831151171291, 10.68541476786181182995949486373

Graph of the $Z$-function along the critical line