Properties

Label 104.2.s.a
Level $104$
Weight $2$
Character orbit 104.s
Analytic conductor $0.830$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,2,Mod(69,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - 1) q^{2} + ( - \zeta_{12}^{2} + \zeta_{12} - 1) q^{3} - 2 \zeta_{12}^{3} q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12} - 2) q^{5} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}^{2}) q^{6} + (2 \zeta_{12}^{2} - 4) q^{7} + \cdots + ( - 4 \zeta_{12}^{3} + 8 \zeta_{12} - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 6 q^{3} - 8 q^{5} + 4 q^{6} - 12 q^{7} + 8 q^{8} + 2 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 10 q^{18} - 6 q^{19} + 24 q^{21} + 4 q^{22} - 6 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
69.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−1.00000 1.00000i −2.36603 1.36603i 2.00000i −0.267949 1.00000 + 3.73205i −3.00000 + 1.73205i 2.00000 2.00000i 2.23205 + 3.86603i 0.267949 + 0.267949i
69.2 −1.00000 + 1.00000i −0.633975 0.366025i 2.00000i −3.73205 1.00000 0.267949i −3.00000 + 1.73205i 2.00000 + 2.00000i −1.23205 2.13397i 3.73205 3.73205i
101.1 −1.00000 1.00000i −0.633975 + 0.366025i 2.00000i −3.73205 1.00000 + 0.267949i −3.00000 1.73205i 2.00000 2.00000i −1.23205 + 2.13397i 3.73205 + 3.73205i
101.2 −1.00000 + 1.00000i −2.36603 + 1.36603i 2.00000i −0.267949 1.00000 3.73205i −3.00000 1.73205i 2.00000 + 2.00000i 2.23205 3.86603i 0.267949 0.267949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.2.s.a 4
3.b odd 2 1 936.2.dg.b 4
4.b odd 2 1 416.2.ba.b 4
8.b even 2 1 104.2.s.b yes 4
8.d odd 2 1 416.2.ba.a 4
13.e even 6 1 104.2.s.b yes 4
24.h odd 2 1 936.2.dg.a 4
39.h odd 6 1 936.2.dg.a 4
52.i odd 6 1 416.2.ba.a 4
104.p odd 6 1 416.2.ba.b 4
104.s even 6 1 inner 104.2.s.a 4
312.bg odd 6 1 936.2.dg.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.s.a 4 1.a even 1 1 trivial
104.2.s.a 4 104.s even 6 1 inner
104.2.s.b yes 4 8.b even 2 1
104.2.s.b yes 4 13.e even 6 1
416.2.ba.a 4 8.d odd 2 1
416.2.ba.a 4 52.i odd 6 1
416.2.ba.b 4 4.b odd 2 1
416.2.ba.b 4 104.p odd 6 1
936.2.dg.a 4 24.h odd 2 1
936.2.dg.a 4 39.h odd 6 1
936.2.dg.b 4 3.b odd 2 1
936.2.dg.b 4 312.bg odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 6T_{3}^{3} + 14T_{3}^{2} + 12T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(104, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$29$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$31$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$37$ \( T^{4} + 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 484 \) Copy content Toggle raw display
$53$ \( T^{4} + 114T^{2} + 1521 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$67$ \( T^{4} + 18 T^{3} + \cdots + 6084 \) Copy content Toggle raw display
$71$ \( T^{4} + 6 T^{3} + \cdots + 13924 \) Copy content Toggle raw display
$73$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$97$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
show more
show less