| L(s) = 1 | + 4·7-s − 4·9-s + 4·11-s − 4·25-s + 6·29-s + 10·37-s − 12·43-s + 9·49-s + 10·53-s − 16·63-s + 12·67-s + 8·71-s + 16·77-s − 16·79-s + 7·81-s − 16·99-s − 4·107-s + 18·109-s + 8·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
| L(s) = 1 | + 1.51·7-s − 4/3·9-s + 1.20·11-s − 4/5·25-s + 1.11·29-s + 1.64·37-s − 1.82·43-s + 9/7·49-s + 1.37·53-s − 2.01·63-s + 1.46·67-s + 0.949·71-s + 1.82·77-s − 1.80·79-s + 7/9·81-s − 1.60·99-s − 0.386·107-s + 1.72·109-s + 0.752·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.380631337\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.380631337\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.240933765556874802038078268283, −7.978791796060660420870812430238, −7.44608252878462617373329558634, −6.85837606570585725941475805396, −6.46252920356004503364615799287, −5.93129613082725659790104036681, −5.56087131145895171569226375181, −5.02417808289938285535275447904, −4.57934355049213146946943272399, −4.07013116279426977050235252680, −3.54433570013807539633403039543, −2.83031760233214085553452092368, −2.24208405724219605019537317045, −1.58515595650476848472698733656, −0.78210697286726853691608896594,
0.78210697286726853691608896594, 1.58515595650476848472698733656, 2.24208405724219605019537317045, 2.83031760233214085553452092368, 3.54433570013807539633403039543, 4.07013116279426977050235252680, 4.57934355049213146946943272399, 5.02417808289938285535275447904, 5.56087131145895171569226375181, 5.93129613082725659790104036681, 6.46252920356004503364615799287, 6.85837606570585725941475805396, 7.44608252878462617373329558634, 7.978791796060660420870812430238, 8.240933765556874802038078268283