| L(s) = 1 | + 2·4-s + 7-s − 13-s − 2·19-s − 2·25-s + 2·28-s − 4·31-s − 12·37-s + 5·43-s − 6·49-s − 2·52-s − 9·61-s − 8·64-s − 9·67-s − 16·73-s − 4·76-s − 10·79-s − 91-s − 5·97-s − 4·100-s + 6·103-s + 12·109-s + 5·121-s − 8·124-s + 127-s + 131-s − 2·133-s + ⋯ |
| L(s) = 1 | + 4-s + 0.377·7-s − 0.277·13-s − 0.458·19-s − 2/5·25-s + 0.377·28-s − 0.718·31-s − 1.97·37-s + 0.762·43-s − 6/7·49-s − 0.277·52-s − 1.15·61-s − 64-s − 1.09·67-s − 1.87·73-s − 0.458·76-s − 1.12·79-s − 0.104·91-s − 0.507·97-s − 2/5·100-s + 0.591·103-s + 1.14·109-s + 5/11·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s − 0.173·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.050410832388563778283814904588, −7.51267285158613443437371192202, −7.22480369990723168175860097186, −6.93704357248659722619326490804, −6.26125532523106571783012657181, −5.92636681849482320525136210915, −5.49768116970693892151520196744, −4.72200552444619457588408530073, −4.52160749380226083190509803499, −3.71949575563839321065311570435, −3.17750376798647924400430682627, −2.59763781104362218613553900494, −1.89420878522561252854471951859, −1.51508341509677977074258029538, 0,
1.51508341509677977074258029538, 1.89420878522561252854471951859, 2.59763781104362218613553900494, 3.17750376798647924400430682627, 3.71949575563839321065311570435, 4.52160749380226083190509803499, 4.72200552444619457588408530073, 5.49768116970693892151520196744, 5.92636681849482320525136210915, 6.26125532523106571783012657181, 6.93704357248659722619326490804, 7.22480369990723168175860097186, 7.51267285158613443437371192202, 8.050410832388563778283814904588