L(s) = 1 | − 4·11-s + 6·25-s + 8·31-s − 4·37-s − 8·41-s − 2·49-s + 8·67-s + 8·83-s + 4·97-s − 8·101-s − 8·103-s + 24·107-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 1.20·11-s + 6/5·25-s + 1.43·31-s − 0.657·37-s − 1.24·41-s − 2/7·49-s + 0.977·67-s + 0.878·83-s + 0.406·97-s − 0.796·101-s − 0.788·103-s + 2.32·107-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.546252806\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.546252806\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.485585837447245330936009314330, −7.86625283054298970890470673322, −7.65067612756759688632517302213, −6.91998728268404911649668111344, −6.66858064388274691433360877408, −6.18427977876090445762762845567, −5.50178705111039034559284722557, −5.11076623056258069455196990119, −4.77894185686831238356647618167, −4.16905824040209989087652768054, −3.43058526805238327527110900873, −2.96340895256567703767158843982, −2.42810280321691380344172246602, −1.65464773353732529260119888334, −0.62934390762895055177768515591,
0.62934390762895055177768515591, 1.65464773353732529260119888334, 2.42810280321691380344172246602, 2.96340895256567703767158843982, 3.43058526805238327527110900873, 4.16905824040209989087652768054, 4.77894185686831238356647618167, 5.11076623056258069455196990119, 5.50178705111039034559284722557, 6.18427977876090445762762845567, 6.66858064388274691433360877408, 6.91998728268404911649668111344, 7.65067612756759688632517302213, 7.86625283054298970890470673322, 8.485585837447245330936009314330