Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 18 x^{2} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.230328106416$, $\pm0.769671893584$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{41})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $368$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5312$ | $28217344$ | $151334508224$ | $807047190347776$ | $4297625827301220032$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5294$ | $389018$ | $28418910$ | $2073071594$ | $151334790158$ | $11047398519098$ | $806459991903934$ | $58871586708267914$ | $4297625824898882414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 368 curves (of which all are hyperelliptic):
- $y^2=40 x^6+59 x^5+10 x^4+17 x^3+55 x^2+52 x+44$
- $y^2=54 x^6+3 x^5+50 x^4+12 x^3+56 x^2+41 x+1$
- $y^2=65 x^6+23 x^5+47 x^4+6 x^3+65 x^2+19 x+57$
- $y^2=33 x^6+42 x^5+16 x^4+30 x^3+33 x^2+22 x+66$
- $y^2=10 x^6+20 x^5+33 x^4+43 x^3+8 x^2+35 x+27$
- $y^2=50 x^6+27 x^5+19 x^4+69 x^3+40 x^2+29 x+62$
- $y^2=63 x^6+71 x^4+30 x^3+45 x^2+65 x+30$
- $y^2=23 x^6+63 x^4+4 x^3+6 x^2+33 x+4$
- $y^2=45 x^6+38 x^5+50 x^4+15 x^3+35 x^2+25 x+46$
- $y^2=6 x^6+44 x^5+31 x^4+2 x^3+29 x^2+52 x+11$
- $y^2=29 x^6+3 x^4+69 x^3+29 x^2+56 x+55$
- $y^2=72 x^6+15 x^4+53 x^3+72 x^2+61 x+56$
- $y^2=5 x^6+45 x^5+47 x^4+11 x^3+56 x^2+2 x+58$
- $y^2=25 x^6+6 x^5+16 x^4+55 x^3+61 x^2+10 x+71$
- $y^2=34 x^6+29 x^5+59 x^4+44 x^3+3 x^2+68 x+16$
- $y^2=50 x^6+50 x^5+72 x^4+60 x^3+5 x^2+39 x+41$
- $y^2=31 x^6+31 x^5+68 x^4+8 x^3+25 x^2+49 x+59$
- $y^2=56 x^6+25 x^5+16 x^4+12 x^3+34 x^2+57 x+7$
- $y^2=11 x^6+44 x^5+x^4+52 x^3+14 x^2+39 x+69$
- $y^2=55 x^6+x^5+5 x^4+41 x^3+70 x^2+49 x+53$
- and 348 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{41})\). |
| The base change of $A$ to $\F_{73^{2}}$ is 1.5329.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-82}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.a_s | $4$ | (not in LMFDB) |
| 2.73.aq_ey | $8$ | (not in LMFDB) |
| 2.73.q_ey | $8$ | (not in LMFDB) |