L(s) = 1 | + 2·2-s + 2·4-s − 4·16-s + 4·17-s − 2·19-s − 6·25-s − 8·32-s + 8·34-s − 4·38-s − 12·41-s − 10·43-s − 10·49-s − 12·50-s − 8·64-s + 8·67-s + 8·68-s − 12·73-s − 4·76-s − 24·82-s − 16·83-s − 20·86-s + 2·89-s − 4·97-s − 20·98-s − 12·100-s + 30·113-s + 121-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 16-s + 0.970·17-s − 0.458·19-s − 6/5·25-s − 1.41·32-s + 1.37·34-s − 0.648·38-s − 1.87·41-s − 1.52·43-s − 1.42·49-s − 1.69·50-s − 64-s + 0.977·67-s + 0.970·68-s − 1.40·73-s − 0.458·76-s − 2.65·82-s − 1.75·83-s − 2.15·86-s + 0.211·89-s − 0.406·97-s − 2.02·98-s − 6/5·100-s + 2.82·113-s + 1/11·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.044073724531568652575618525215, −7.71216341397497553733457081183, −6.99609020324212132882692258755, −6.72870277133947190736417516488, −6.23581126423677511509966818006, −5.64200819492977995161931488096, −5.49085577929950988360231315237, −4.73237147534793568242541887587, −4.55589233958700647673458918890, −3.74895625289394821675073785368, −3.42118066119039866629302067987, −2.97216790131392771832876343444, −2.11838496406239973085632915984, −1.54280325836205256397367872759, 0,
1.54280325836205256397367872759, 2.11838496406239973085632915984, 2.97216790131392771832876343444, 3.42118066119039866629302067987, 3.74895625289394821675073785368, 4.55589233958700647673458918890, 4.73237147534793568242541887587, 5.49085577929950988360231315237, 5.64200819492977995161931488096, 6.23581126423677511509966818006, 6.72870277133947190736417516488, 6.99609020324212132882692258755, 7.71216341397497553733457081183, 8.044073724531568652575618525215