L(s) = 1 | + 9-s − 4·16-s − 7·25-s + 6·37-s + 12·41-s − 10·47-s + 49-s + 4·53-s + 10·67-s + 4·71-s + 14·73-s + 81-s − 14·83-s + 10·101-s + 4·107-s − 21·121-s + 127-s + 131-s + 137-s + 139-s − 4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 19·169-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 16-s − 7/5·25-s + 0.986·37-s + 1.87·41-s − 1.45·47-s + 1/7·49-s + 0.549·53-s + 1.22·67-s + 0.474·71-s + 1.63·73-s + 1/9·81-s − 1.53·83-s + 0.995·101-s + 0.386·107-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.46·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.654379299\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.654379299\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.275962740742164023312994185986, −7.924602239188114007034791987426, −7.62188840177009772059906461732, −7.01172710086903825886282970247, −6.60372622295106809811990187394, −6.19221657725493094835507177119, −5.65569314879668610364825861062, −5.17544341556452146992966082197, −4.57233251622871343091995902414, −4.10849925567150194832561143305, −3.73476206945871048186921604748, −2.88862751607288962954881137888, −2.32269690573043982473290931269, −1.72966379433725597911788631955, −0.65308571840755367172190793075,
0.65308571840755367172190793075, 1.72966379433725597911788631955, 2.32269690573043982473290931269, 2.88862751607288962954881137888, 3.73476206945871048186921604748, 4.10849925567150194832561143305, 4.57233251622871343091995902414, 5.17544341556452146992966082197, 5.65569314879668610364825861062, 6.19221657725493094835507177119, 6.60372622295106809811990187394, 7.01172710086903825886282970247, 7.62188840177009772059906461732, 7.924602239188114007034791987426, 8.275962740742164023312994185986