Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x^{2} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.231451651869$, $\pm0.768548348131$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-19})\) |
Galois group: | $C_2^2$ |
Jacobians: | $188$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1840$ | $3385600$ | $6321417520$ | $11712821760000$ | $21611482151489200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1830$ | $79508$ | $3425998$ | $147008444$ | $6321471990$ | $271818611108$ | $11688188061598$ | $502592611936844$ | $21611481989694150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 188 curves (of which all are hyperelliptic):
- $y^2=12 x^6+16 x^5+38 x^4+x^3+9 x^2+5 x+30$
- $y^2=22 x^6+39 x^5+6 x^4+34 x^3+31 x^2+22 x+18$
- $y^2=26 x^6+35 x^5+4 x^4+18 x^3+7 x^2+28 x+38$
- $y^2=35 x^6+19 x^5+12 x^4+11 x^3+21 x^2+41 x+28$
- $y^2=31 x^6+39 x^5+2 x^4+38 x^3+17 x^2+12 x+5$
- $y^2=3 x^6+34 x^5+20 x^4+36 x^3+20 x^2+7 x$
- $y^2=9 x^6+16 x^5+17 x^4+22 x^3+17 x^2+21 x$
- $y^2=x^6+42 x^5+23 x^4+24 x^3+31 x^2+28 x+23$
- $y^2=3 x^6+40 x^5+26 x^4+29 x^3+7 x^2+41 x+26$
- $y^2=18 x^6+41 x^5+41 x^4+26 x^3+37 x^2+25 x+13$
- $y^2=11 x^6+21 x^5+30 x^4+20 x^3+32 x^2+22 x+18$
- $y^2=33 x^6+20 x^5+4 x^4+17 x^3+10 x^2+23 x+11$
- $y^2=24 x^6+4 x^5+11 x^3+40 x^2+30 x+17$
- $y^2=36 x^6+11 x^5+x^4+20 x^3+14 x^2+2 x+32$
- $y^2=22 x^6+33 x^5+3 x^4+17 x^3+42 x^2+6 x+10$
- $y^2=35 x^6+14 x^5+3 x^4+x^3+41 x^2+26 x+22$
- $y^2=19 x^6+42 x^5+9 x^4+3 x^3+37 x^2+35 x+23$
- $y^2=31 x^6+32 x^5+32 x^4+12 x^3+15 x^2+30 x+29$
- $y^2=7 x^6+10 x^5+10 x^4+36 x^3+2 x^2+4 x+1$
- $y^2=29 x^6+16 x^5+15 x^4+11 x^3+32 x^2+41 x+38$
- and 168 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-19})\). |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-114}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.a_k | $4$ | (not in LMFDB) |