L(s) = 1 | + 2-s − 4-s + 3·7-s − 3·8-s + 6·11-s + 3·14-s − 16-s + 6·22-s + 6·23-s + 25-s − 3·28-s − 14·29-s + 5·32-s − 3·37-s + 12·43-s − 6·44-s + 6·46-s + 2·49-s + 50-s − 4·53-s − 9·56-s − 14·58-s + 7·64-s + 18·67-s + 18·71-s − 3·74-s + 18·77-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s + 1.13·7-s − 1.06·8-s + 1.80·11-s + 0.801·14-s − 1/4·16-s + 1.27·22-s + 1.25·23-s + 1/5·25-s − 0.566·28-s − 2.59·29-s + 0.883·32-s − 0.493·37-s + 1.82·43-s − 0.904·44-s + 0.884·46-s + 2/7·49-s + 0.141·50-s − 0.549·53-s − 1.20·56-s − 1.83·58-s + 7/8·64-s + 2.19·67-s + 2.13·71-s − 0.348·74-s + 2.05·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.951264786\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.951264786\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.671065156626678213396604679940, −7.890769815024314484364076496554, −7.60315567959625013589468326246, −6.97582199624844229940230611322, −6.60693348183691392840291153032, −6.03611098677557645113136270928, −5.52665390281788376448251679177, −5.13751990113151333491233414929, −4.70237638237238683147435528076, −4.01701542393498577462121399125, −3.83612529868128181061984586605, −3.27522885368086518119167085010, −2.35482163319595042775237315648, −1.64665366174566663065654309445, −0.860925924516051555995362908270,
0.860925924516051555995362908270, 1.64665366174566663065654309445, 2.35482163319595042775237315648, 3.27522885368086518119167085010, 3.83612529868128181061984586605, 4.01701542393498577462121399125, 4.70237638237238683147435528076, 5.13751990113151333491233414929, 5.52665390281788376448251679177, 6.03611098677557645113136270928, 6.60693348183691392840291153032, 6.97582199624844229940230611322, 7.60315567959625013589468326246, 7.890769815024314484364076496554, 8.671065156626678213396604679940