L(s) = 1 | + 2·2-s + 2·4-s − 2·7-s − 9-s + 2·13-s − 4·14-s − 4·16-s − 2·18-s + 4·26-s − 4·28-s + 2·29-s − 8·32-s − 2·36-s − 14·37-s + 4·47-s − 10·49-s + 4·52-s + 4·58-s − 18·61-s + 2·63-s − 8·64-s + 4·67-s + 2·73-s − 28·74-s − 8·81-s + 22·83-s − 4·91-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.755·7-s − 1/3·9-s + 0.554·13-s − 1.06·14-s − 16-s − 0.471·18-s + 0.784·26-s − 0.755·28-s + 0.371·29-s − 1.41·32-s − 1/3·36-s − 2.30·37-s + 0.583·47-s − 1.42·49-s + 0.554·52-s + 0.525·58-s − 2.30·61-s + 0.251·63-s − 64-s + 0.488·67-s + 0.234·73-s − 3.25·74-s − 8/9·81-s + 2.41·83-s − 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.516558842801950142289185772881, −7.82276303139833657289307966146, −7.30546396785080265560669481863, −6.75001764062555649092575302744, −6.38177852467008027292123594822, −6.05791652548158987419982566771, −5.50189857012046315781588006655, −4.97949533292399938588775089019, −4.64334862231214422049307834811, −3.81042352534998735544297567969, −3.52983690007913581069345114537, −3.03431952651838337062663671838, −2.40017972159807830216450523838, −1.51804489120054525868878559026, 0,
1.51804489120054525868878559026, 2.40017972159807830216450523838, 3.03431952651838337062663671838, 3.52983690007913581069345114537, 3.81042352534998735544297567969, 4.64334862231214422049307834811, 4.97949533292399938588775089019, 5.50189857012046315781588006655, 6.05791652548158987419982566771, 6.38177852467008027292123594822, 6.75001764062555649092575302744, 7.30546396785080265560669481863, 7.82276303139833657289307966146, 8.516558842801950142289185772881