Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 79 x^{2} )( 1 + 7 x + 79 x^{2} )$ |
$1 + 109 x^{2} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.371166915609$, $\pm0.628833084391$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $66$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6351$ | $40335201$ | $243086709744$ | $1517155706166489$ | $9468276078829500951$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6460$ | $493040$ | $38951284$ | $3077056400$ | $243085963966$ | $19203908986160$ | $1517108964984484$ | $119851595982618320$ | $9468276075032154700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=28 x^6+71 x^5+23 x^3+57 x^2+15 x+54$
- $y^2=5 x^6+55 x^5+69 x^3+13 x^2+45 x+4$
- $y^2=40 x^6+51 x^5+x^4+32 x^3+21 x^2+41 x+50$
- $y^2=41 x^6+74 x^5+3 x^4+17 x^3+63 x^2+44 x+71$
- $y^2=35 x^6+62 x^5+53 x^4+58 x^3+60 x^2+67 x+37$
- $y^2=26 x^6+28 x^5+x^4+16 x^3+22 x^2+43 x+32$
- $y^2=18 x^6+14 x^5+26 x^4+47 x^3+51 x^2+36 x+58$
- $y^2=54 x^6+42 x^5+78 x^4+62 x^3+74 x^2+29 x+16$
- $y^2=5 x^6+65 x^5+8 x^4+77 x^3+25 x^2+76 x+39$
- $y^2=15 x^6+37 x^5+24 x^4+73 x^3+75 x^2+70 x+38$
- $y^2=26 x^6+5 x^5+37 x^4+20 x^2+44 x+5$
- $y^2=78 x^6+15 x^5+32 x^4+60 x^2+53 x+15$
- $y^2=23 x^6+43 x^5+28 x^4+75 x^3+56 x^2+38 x+60$
- $y^2=69 x^6+50 x^5+5 x^4+67 x^3+10 x^2+35 x+22$
- $y^2=54 x^6+67 x^5+7 x^4+71 x^3+30 x^2+48 x+20$
- $y^2=4 x^6+43 x^5+21 x^4+55 x^3+11 x^2+65 x+60$
- $y^2=49 x^6+25 x^5+75 x^4+49 x^3+74 x^2+50 x+32$
- $y^2=68 x^6+75 x^5+67 x^4+68 x^3+64 x^2+71 x+17$
- $y^2=50 x^6+37 x^5+39 x^4+20 x^3+18 x^2+78 x+70$
- $y^2=2 x^6+21 x^5+3 x^4+46 x^3+65 x^2+36 x+63$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.ah $\times$ 1.79.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.ef 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-267}) \)$)$ |
Base change
This is a primitive isogeny class.