L(s) = 1 | + 3-s + 4-s + 9-s − 6·11-s + 12-s + 16-s + 6·25-s + 27-s + 6·29-s − 2·31-s − 6·33-s + 36-s + 6·37-s − 6·41-s − 6·44-s + 48-s − 49-s + 64-s + 8·67-s + 6·75-s + 81-s + 6·87-s − 2·93-s − 4·97-s − 6·99-s + 6·100-s + 12·101-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 1/4·16-s + 6/5·25-s + 0.192·27-s + 1.11·29-s − 0.359·31-s − 1.04·33-s + 1/6·36-s + 0.986·37-s − 0.937·41-s − 0.904·44-s + 0.144·48-s − 1/7·49-s + 1/8·64-s + 0.977·67-s + 0.692·75-s + 1/9·81-s + 0.643·87-s − 0.207·93-s − 0.406·97-s − 0.603·99-s + 3/5·100-s + 1.19·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.422568772\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.422568772\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.295610574610407759725407849958, −7.944001850443576619202935956012, −7.54933157318806943127813292354, −7.11786920602932915026426529419, −6.59200975973742239022958505327, −6.24269726665450571638474838643, −5.48015905701788430969278780413, −5.18520795527895819484772342341, −4.66494399589857604857345682734, −4.12644275773749040094829363026, −3.25181356993824591591533447086, −2.97011757475229408648459275885, −2.43371316457661695605742618325, −1.81765070010737079559308864452, −0.74575401388116724502101325022,
0.74575401388116724502101325022, 1.81765070010737079559308864452, 2.43371316457661695605742618325, 2.97011757475229408648459275885, 3.25181356993824591591533447086, 4.12644275773749040094829363026, 4.66494399589857604857345682734, 5.18520795527895819484772342341, 5.48015905701788430969278780413, 6.24269726665450571638474838643, 6.59200975973742239022958505327, 7.11786920602932915026426529419, 7.54933157318806943127813292354, 7.944001850443576619202935956012, 8.295610574610407759725407849958