L(s) = 1 | + 2·3-s − 2·5-s − 2·7-s + 3·9-s + 4·11-s + 6·13-s − 4·15-s − 4·17-s + 2·19-s − 4·21-s − 2·23-s − 2·25-s + 4·27-s + 8·29-s − 2·31-s + 8·33-s + 4·35-s + 6·37-s + 12·39-s + 4·41-s − 12·43-s − 6·45-s − 10·47-s + 3·49-s − 8·51-s + 8·53-s − 8·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s − 0.755·7-s + 9-s + 1.20·11-s + 1.66·13-s − 1.03·15-s − 0.970·17-s + 0.458·19-s − 0.872·21-s − 0.417·23-s − 2/5·25-s + 0.769·27-s + 1.48·29-s − 0.359·31-s + 1.39·33-s + 0.676·35-s + 0.986·37-s + 1.92·39-s + 0.624·41-s − 1.82·43-s − 0.894·45-s − 1.45·47-s + 3/7·49-s − 1.12·51-s + 1.09·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 40755456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40755456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.402532466\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.402532466\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.229600518773975382325719341728, −8.101064705661492960728348788384, −7.48463571436766336454265916432, −7.18560899819909786779018688234, −6.71689960474389991312815162106, −6.60983200478485493503080977723, −6.22721386571719066141736222307, −5.90045592668040909303708598680, −5.31806714765456964718011230107, −4.86847347042519147609834628265, −4.21285168566768010393903353135, −4.16079531346818172001126513973, −3.77555050148179383616424215096, −3.52865102916761077414045316887, −2.88878999060875997186142293677, −2.88803127154916857097334783006, −1.93606759727071188688028715989, −1.76341941261367403864714751245, −0.996482657996319566815008687890, −0.56569870646925842625266256142,
0.56569870646925842625266256142, 0.996482657996319566815008687890, 1.76341941261367403864714751245, 1.93606759727071188688028715989, 2.88803127154916857097334783006, 2.88878999060875997186142293677, 3.52865102916761077414045316887, 3.77555050148179383616424215096, 4.16079531346818172001126513973, 4.21285168566768010393903353135, 4.86847347042519147609834628265, 5.31806714765456964718011230107, 5.90045592668040909303708598680, 6.22721386571719066141736222307, 6.60983200478485493503080977723, 6.71689960474389991312815162106, 7.18560899819909786779018688234, 7.48463571436766336454265916432, 8.101064705661492960728348788384, 8.229600518773975382325719341728