Properties

Label 2.79.c_bi
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + 34 x^{2} + 158 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.305900322730$, $\pm0.740284185152$
Angle rank:  $2$ (numerical)
Number field:  4.0.35600.3
Galois group:  $D_{4}$
Jacobians:  $444$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6436$ $39362576$ $243224040916$ $1517962635833600$ $9468042608569105396$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $6306$ $493318$ $38971998$ $3076980522$ $243086418786$ $19203908441758$ $1517108721455358$ $119851596815389282$ $9468276090524931106$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 444 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.35600.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.ac_bi$2$(not in LMFDB)