L(s) = 1 | − 2·2-s + 3·4-s − 4·7-s − 4·8-s + 4·13-s + 8·14-s + 5·16-s + 4·19-s − 12·23-s − 4·25-s − 8·26-s − 12·28-s − 4·31-s − 6·32-s + 8·37-s − 8·38-s − 12·41-s − 8·43-s + 24·46-s + 4·49-s + 8·50-s + 12·52-s − 12·53-s + 16·56-s + 12·59-s + 8·61-s + 8·62-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.51·7-s − 1.41·8-s + 1.10·13-s + 2.13·14-s + 5/4·16-s + 0.917·19-s − 2.50·23-s − 4/5·25-s − 1.56·26-s − 2.26·28-s − 0.718·31-s − 1.06·32-s + 1.31·37-s − 1.29·38-s − 1.87·41-s − 1.21·43-s + 3.53·46-s + 4/7·49-s + 1.13·50-s + 1.66·52-s − 1.64·53-s + 2.13·56-s + 1.56·59-s + 1.02·61-s + 1.01·62-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.134224251733526988945850583399, −7.79899802204457089505195477502, −7.25184272051023650834158859061, −7.18024803657722560641057072321, −6.46546729201441883616077663616, −6.36783540662630640072246332774, −6.11092912932926989749835833976, −5.74644160020615702216216309142, −5.26643831948306429547065500409, −4.82321010434041451315326430526, −4.00309441200777132386434395017, −3.75745906649164815722220219942, −3.44808427229050337663380735980, −3.10271098527377872048487638693, −2.41704367384853537926625425602, −2.06148843032489325122553400852, −1.52531686293198501246355636871, −0.996523027521248524221400884381, 0, 0,
0.996523027521248524221400884381, 1.52531686293198501246355636871, 2.06148843032489325122553400852, 2.41704367384853537926625425602, 3.10271098527377872048487638693, 3.44808427229050337663380735980, 3.75745906649164815722220219942, 4.00309441200777132386434395017, 4.82321010434041451315326430526, 5.26643831948306429547065500409, 5.74644160020615702216216309142, 6.11092912932926989749835833976, 6.36783540662630640072246332774, 6.46546729201441883616077663616, 7.18024803657722560641057072321, 7.25184272051023650834158859061, 7.79899802204457089505195477502, 8.134224251733526988945850583399