L(s) = 1 | − 2-s + 2·3-s − 2·4-s − 2·6-s + 3·8-s + 3·9-s − 4·12-s − 4·13-s + 16-s − 4·17-s − 3·18-s + 4·19-s − 4·23-s + 6·24-s + 4·26-s + 4·27-s − 6·29-s + 8·31-s − 2·32-s + 4·34-s − 6·36-s − 2·37-s − 4·38-s − 8·39-s + 4·43-s + 4·46-s − 12·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.15·3-s − 4-s − 0.816·6-s + 1.06·8-s + 9-s − 1.15·12-s − 1.10·13-s + 1/4·16-s − 0.970·17-s − 0.707·18-s + 0.917·19-s − 0.834·23-s + 1.22·24-s + 0.784·26-s + 0.769·27-s − 1.11·29-s + 1.43·31-s − 0.353·32-s + 0.685·34-s − 36-s − 0.328·37-s − 0.648·38-s − 1.28·39-s + 0.609·43-s + 0.589·46-s − 1.75·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.945644884\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.945644884\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.723785488340679600898009610381, −8.300500577920638833014358437412, −8.084090579362239943073257823720, −7.931868426882658118486304450847, −7.36161784804062238323027072451, −6.98954256684332909102626779575, −6.70740271012658548509929209388, −6.29938329822015933891064652630, −5.44837029455917709368259646714, −5.36914118560951591558756622676, −4.72454276077390489801669038944, −4.64307228564601144207180815961, −3.86511444911867384901782156285, −3.81333154639176853508304431813, −3.30467270284267146974671160831, −2.59044985746324364740811159025, −2.11559005880185780999528482442, −2.01492543189353378850909063706, −0.849104392237348853837219062392, −0.58901453918617412730985288115,
0.58901453918617412730985288115, 0.849104392237348853837219062392, 2.01492543189353378850909063706, 2.11559005880185780999528482442, 2.59044985746324364740811159025, 3.30467270284267146974671160831, 3.81333154639176853508304431813, 3.86511444911867384901782156285, 4.64307228564601144207180815961, 4.72454276077390489801669038944, 5.36914118560951591558756622676, 5.44837029455917709368259646714, 6.29938329822015933891064652630, 6.70740271012658548509929209388, 6.98954256684332909102626779575, 7.36161784804062238323027072451, 7.931868426882658118486304450847, 8.084090579362239943073257823720, 8.300500577920638833014358437412, 8.723785488340679600898009610381