Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 102 x^{2} - 236 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.361573890901$, $\pm0.551446868894$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.69725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $138$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3344$ | $12787456$ | $42273406736$ | $146777284358144$ | $511112918174337424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $3670$ | $205832$ | $12112974$ | $714918936$ | $42180412006$ | $2488648936424$ | $146830453826334$ | $8662996133445368$ | $511116752727151350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):
- $y^2=48 x^6+34 x^5+24 x^4+53 x^3+36 x^2+3 x+2$
- $y^2=17 x^6+16 x^5+7 x^4+13 x^3+10 x^2+58 x+22$
- $y^2=39 x^6+34 x^5+46 x^4+50 x^3+19 x^2+44 x+24$
- $y^2=19 x^5+48 x^4+16 x^3+21 x^2+31 x+13$
- $y^2=30 x^6+53 x^5+8 x^4+57 x^3+46 x^2+55 x+27$
- $y^2=21 x^6+35 x^5+23 x^4+41 x^3+53 x^2+36 x+20$
- $y^2=8 x^6+44 x^5+11 x^4+8 x^3+34 x^2+4 x$
- $y^2=17 x^6+39 x^5+35 x^4+46 x^3+29 x^2+42$
- $y^2=46 x^6+44 x^5+49 x^4+53 x^3+39 x^2+35 x+20$
- $y^2=44 x^6+17 x^5+30 x^4+51 x^3+5 x^2+21 x+12$
- $y^2=45 x^6+47 x^5+12 x^4+42 x^3+27 x^2+3 x+44$
- $y^2=13 x^6+47 x^5+18 x^4+52 x^3+41 x^2+35 x+44$
- $y^2=15 x^6+48 x^5+51 x^4+48 x^3+35 x^2+7 x+56$
- $y^2=17 x^6+55 x^5+8 x^4+47 x^3+47 x^2+16 x+34$
- $y^2=46 x^6+39 x^5+22 x^4+49 x^3+13 x^2+48 x+14$
- $y^2=47 x^6+21 x^5+39 x^4+43 x^3+41 x^2+7 x+27$
- $y^2=49 x^6+4 x^5+57 x^4+5 x^3+x^2+35 x+21$
- $y^2=32 x^6+48 x^5+50 x^4+16 x^3+5 x^2+36 x+33$
- $y^2=8 x^6+56 x^5+54 x^4+47 x^3+4 x^2+46 x+40$
- $y^2=6 x^6+2 x^5+12 x^4+3 x^3+11 x^2+39 x+44$
- and 118 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.69725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.e_dy | $2$ | (not in LMFDB) |