Properties

Label 2.59.ae_dy
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 102 x^{2} - 236 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.361573890901$, $\pm0.551446868894$
Angle rank:  $2$ (numerical)
Number field:  4.0.69725.1
Galois group:  $D_{4}$
Jacobians:  $138$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3344$ $12787456$ $42273406736$ $146777284358144$ $511112918174337424$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $3670$ $205832$ $12112974$ $714918936$ $42180412006$ $2488648936424$ $146830453826334$ $8662996133445368$ $511116752727151350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.69725.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.e_dy$2$(not in LMFDB)