| L(s) = 1 | − 2·2-s + 2·3-s + 2·4-s − 2·5-s − 4·6-s − 2·9-s + 4·10-s − 2·11-s + 4·12-s − 4·15-s − 4·16-s + 2·17-s + 4·18-s + 6·19-s − 4·20-s + 4·22-s + 10·23-s − 3·25-s − 10·27-s − 10·29-s + 8·30-s + 6·31-s + 8·32-s − 4·33-s − 4·34-s − 4·36-s − 6·37-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 1.15·3-s + 4-s − 0.894·5-s − 1.63·6-s − 2/3·9-s + 1.26·10-s − 0.603·11-s + 1.15·12-s − 1.03·15-s − 16-s + 0.485·17-s + 0.942·18-s + 1.37·19-s − 0.894·20-s + 0.852·22-s + 2.08·23-s − 3/5·25-s − 1.92·27-s − 1.85·29-s + 1.46·30-s + 1.07·31-s + 1.41·32-s − 0.696·33-s − 0.685·34-s − 2/3·36-s − 0.986·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.8601618885, −13.5240709135, −13.5080204842, −12.6926896247, −12.1334996147, −11.5927992260, −11.2040338670, −11.1518658275, −10.2510418534, −9.97759541606, −9.38463950725, −8.99834677241, −8.73547122738, −8.14438866848, −7.88305646626, −7.43563929744, −7.14918000367, −6.37684020437, −5.34298608831, −5.27883313771, −4.23622923362, −3.39334742454, −3.11744276397, −2.38361565588, −1.35836937710, 0,
1.35836937710, 2.38361565588, 3.11744276397, 3.39334742454, 4.23622923362, 5.27883313771, 5.34298608831, 6.37684020437, 7.14918000367, 7.43563929744, 7.88305646626, 8.14438866848, 8.73547122738, 8.99834677241, 9.38463950725, 9.97759541606, 10.2510418534, 11.1518658275, 11.2040338670, 11.5927992260, 12.1334996147, 12.6926896247, 13.5080204842, 13.5240709135, 13.8601618885