Properties

Label 4-364e2-1.1-c1e2-0-7
Degree $4$
Conductor $132496$
Sign $-1$
Analytic cond. $8.44805$
Root an. cond. $1.70486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 2·4-s − 2·5-s − 4·6-s − 2·9-s + 4·10-s − 2·11-s + 4·12-s − 4·15-s − 4·16-s + 2·17-s + 4·18-s + 6·19-s − 4·20-s + 4·22-s + 10·23-s − 3·25-s − 10·27-s − 10·29-s + 8·30-s + 6·31-s + 8·32-s − 4·33-s − 4·34-s − 4·36-s − 6·37-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 4-s − 0.894·5-s − 1.63·6-s − 2/3·9-s + 1.26·10-s − 0.603·11-s + 1.15·12-s − 1.03·15-s − 16-s + 0.485·17-s + 0.942·18-s + 1.37·19-s − 0.894·20-s + 0.852·22-s + 2.08·23-s − 3/5·25-s − 1.92·27-s − 1.85·29-s + 1.46·30-s + 1.07·31-s + 1.41·32-s − 0.696·33-s − 0.685·34-s − 2/3·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(8.44805\)
Root analytic conductor: \(1.70486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 132496,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.3.ac_g
5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.5.c_h
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.11.c_ac
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.17.ac_ba
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} ) \) 2.19.ag_br
23$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) 2.23.ak_cp
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \) 2.29.k_df
31$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.31.ag_bj
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.37.g_de
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.e_cs
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.43.c_dj
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.47.c_bf
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.53.g_db
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.59.ai_eo
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.ae_as
67$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.67.q_hm
71$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.ag_be
73$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) 2.73.k_ed
79$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.79.c_fn
83$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.83.ak_dn
89$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.89.g_fv
97$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.97.ag_hf
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.8601618885, −13.5240709135, −13.5080204842, −12.6926896247, −12.1334996147, −11.5927992260, −11.2040338670, −11.1518658275, −10.2510418534, −9.97759541606, −9.38463950725, −8.99834677241, −8.73547122738, −8.14438866848, −7.88305646626, −7.43563929744, −7.14918000367, −6.37684020437, −5.34298608831, −5.27883313771, −4.23622923362, −3.39334742454, −3.11744276397, −2.38361565588, −1.35836937710, 0, 1.35836937710, 2.38361565588, 3.11744276397, 3.39334742454, 4.23622923362, 5.27883313771, 5.34298608831, 6.37684020437, 7.14918000367, 7.43563929744, 7.88305646626, 8.14438866848, 8.73547122738, 8.99834677241, 9.38463950725, 9.97759541606, 10.2510418534, 11.1518658275, 11.2040338670, 11.5927992260, 12.1334996147, 12.6926896247, 13.5080204842, 13.5240709135, 13.8601618885

Graph of the $Z$-function along the critical line