| L(s) = 1 | + 2·2-s + 2·4-s − 5-s − 4·9-s − 2·10-s − 4·16-s − 3·17-s − 8·18-s − 2·20-s − 4·25-s − 9·29-s − 8·32-s − 6·34-s − 8·36-s + 5·37-s − 3·41-s + 4·45-s + 4·49-s − 8·50-s − 10·53-s − 18·58-s − 2·61-s − 8·64-s − 6·68-s − 7·73-s + 10·74-s + 4·80-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s − 0.447·5-s − 4/3·9-s − 0.632·10-s − 16-s − 0.727·17-s − 1.88·18-s − 0.447·20-s − 4/5·25-s − 1.67·29-s − 1.41·32-s − 1.02·34-s − 4/3·36-s + 0.821·37-s − 0.468·41-s + 0.596·45-s + 4/7·49-s − 1.13·50-s − 1.37·53-s − 2.36·58-s − 0.256·61-s − 64-s − 0.727·68-s − 0.819·73-s + 1.16·74-s + 0.447·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.193935989085420975941120096272, −8.805685297379233901664350422678, −8.131377871062503794316869291376, −7.70675236970571404655007913203, −7.15379777788504115449382910047, −6.42752587247229252086038630023, −6.05132648058618191089493812622, −5.62308983832467948153035251042, −5.02757187557242489855967810899, −4.50988870220065703957496002423, −3.81466132792119821996802419342, −3.41119730433172268480983878374, −2.67982700807126108932538437741, −2.00396258952617676420942139258, 0,
2.00396258952617676420942139258, 2.67982700807126108932538437741, 3.41119730433172268480983878374, 3.81466132792119821996802419342, 4.50988870220065703957496002423, 5.02757187557242489855967810899, 5.62308983832467948153035251042, 6.05132648058618191089493812622, 6.42752587247229252086038630023, 7.15379777788504115449382910047, 7.70675236970571404655007913203, 8.131377871062503794316869291376, 8.805685297379233901664350422678, 9.193935989085420975941120096272