Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 43 x^{2} )( 1 + 9 x + 43 x^{2} )$ |
$1 + 5 x^{2} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.259258415261$, $\pm0.740741584739$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $122$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1855$ | $3441025$ | $6321335440$ | $11713335125625$ | $21611482397601775$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1860$ | $79508$ | $3426148$ | $147008444$ | $6321307830$ | $271818611108$ | $11688186970948$ | $502592611936844$ | $21611482481919300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 122 curves (of which all are hyperelliptic):
- $y^2=17 x^6+8 x^5+38 x^4+7 x^3+3 x^2+5$
- $y^2=8 x^6+24 x^5+28 x^4+21 x^3+9 x^2+15$
- $y^2=22 x^6+4 x^5+31 x^4+42 x^3+18 x^2+9 x+1$
- $y^2=19 x^6+13 x^5+35 x^4+24 x^3+25 x^2+4 x+33$
- $y^2=14 x^6+39 x^5+19 x^4+29 x^3+32 x^2+12 x+13$
- $y^2=12 x^6+28 x^5+37 x^4+8 x^3+42 x^2+39 x+12$
- $y^2=36 x^6+41 x^5+25 x^4+24 x^3+40 x^2+31 x+36$
- $y^2=26 x^6+42 x^5+39 x^4+18 x^3+9 x^2+26 x+21$
- $y^2=35 x^6+40 x^5+31 x^4+11 x^3+27 x^2+35 x+20$
- $y^2=19 x^6+22 x^5+17 x^4+11 x^3+28 x^2+21 x+5$
- $y^2=14 x^6+23 x^5+8 x^4+33 x^3+41 x^2+20 x+15$
- $y^2=14 x^6+13 x^4+6 x^3+5 x^2+15 x+1$
- $y^2=42 x^6+39 x^4+18 x^3+15 x^2+2 x+3$
- $y^2=9 x^6+x^5+29 x^4+26 x^3+32 x^2+14 x+13$
- $y^2=27 x^6+3 x^5+x^4+35 x^3+10 x^2+42 x+39$
- $y^2=24 x^6+17 x^5+6 x^4+16 x^3+4 x^2+41 x+31$
- $y^2=29 x^6+8 x^5+18 x^4+5 x^3+12 x^2+37 x+7$
- $y^2=27 x^6+23 x^5+40 x^4+7 x^3+8 x^2+15 x+34$
- $y^2=38 x^6+26 x^5+34 x^4+21 x^3+24 x^2+2 x+16$
- $y^2=36 x^6+11 x^5+31 x^4+12 x^3+36 x^2+34 x+31$
- and 102 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.aj $\times$ 1.43.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.