L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 6·7-s − 8-s + 9-s − 12-s − 6·14-s + 16-s − 18-s − 2·19-s − 6·21-s + 24-s + 4·25-s − 27-s + 6·28-s − 6·29-s − 32-s + 36-s + 2·38-s + 8·41-s + 6·42-s − 48-s + 14·49-s − 4·50-s + 54-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 2.26·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 1.60·14-s + 1/4·16-s − 0.235·18-s − 0.458·19-s − 1.30·21-s + 0.204·24-s + 4/5·25-s − 0.192·27-s + 1.13·28-s − 1.11·29-s − 0.176·32-s + 1/6·36-s + 0.324·38-s + 1.24·41-s + 0.925·42-s − 0.144·48-s + 2·49-s − 0.565·50-s + 0.136·54-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.399570025\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.399570025\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.833340910761533957330478798667, −8.305344627030948052465829144088, −7.81112497213833277955895124171, −7.59188784887516363482089610894, −7.12998689511588841583032193183, −6.43665312541074609380190259739, −6.00058306731053923454829630568, −5.36622138805038309129770154541, −4.98665686517280858155513796751, −4.49257862218754637012311508840, −3.97627218853148524179557715705, −3.06082397232802772881305171393, −2.10579774199186446292901728815, −1.71819293263255712388272447557, −0.842640771266003463500603695662,
0.842640771266003463500603695662, 1.71819293263255712388272447557, 2.10579774199186446292901728815, 3.06082397232802772881305171393, 3.97627218853148524179557715705, 4.49257862218754637012311508840, 4.98665686517280858155513796751, 5.36622138805038309129770154541, 6.00058306731053923454829630568, 6.43665312541074609380190259739, 7.12998689511588841583032193183, 7.59188784887516363482089610894, 7.81112497213833277955895124171, 8.305344627030948052465829144088, 8.833340910761533957330478798667