L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 4·7-s − 8-s + 9-s + 12-s + 4·14-s + 16-s − 18-s − 4·19-s − 4·21-s − 24-s + 6·25-s + 27-s − 4·28-s + 4·29-s − 32-s + 36-s + 4·38-s − 16·41-s + 4·42-s + 48-s + 2·49-s − 6·50-s + 8·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.917·19-s − 0.872·21-s − 0.204·24-s + 6/5·25-s + 0.192·27-s − 0.755·28-s + 0.742·29-s − 0.176·32-s + 1/6·36-s + 0.648·38-s − 2.49·41-s + 0.617·42-s + 0.144·48-s + 2/7·49-s − 0.848·50-s + 1.09·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.653484080716903977705916353169, −8.474862930013678634159274301125, −7.58551103617486918203432305750, −7.18267569496589497300240169014, −6.73349135980276102820176585606, −6.42281554629734053762812373919, −5.94992469189418112521251587769, −5.16530890544106499993554708872, −4.63753645110059596789046535631, −3.82864275574522379839495434680, −3.36928332890094669310266556551, −2.82016877669977930165677555657, −2.25170228376828726119667916219, −1.25769186646435167725034104696, 0,
1.25769186646435167725034104696, 2.25170228376828726119667916219, 2.82016877669977930165677555657, 3.36928332890094669310266556551, 3.82864275574522379839495434680, 4.63753645110059596789046535631, 5.16530890544106499993554708872, 5.94992469189418112521251587769, 6.42281554629734053762812373919, 6.73349135980276102820176585606, 7.18267569496589497300240169014, 7.58551103617486918203432305750, 8.474862930013678634159274301125, 8.653484080716903977705916353169